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Abstract. Scholars argue that artificial intelligence (AI) can generate genuine novelty and 
new knowledge and, in turn, that AI and computational models of cognition will replace 
human decision making under uncertainty. We disagree. We argue that AI’s data-based 
prediction is different from human theory-based causal logic and reasoning. We highlight 
problems with the decades-old analogy between computers and minds as input–output 
devices, using large language models as an example. Human cognition is better conceptu
alized as a form of theory-based causal reasoning rather than AI’s emphasis on information 
processing and data-based prediction. AI uses a probability-based approach to knowledge 
and is largely backward looking and imitative, whereas human cognition is forward- 
looking and capable of generating genuine novelty. We introduce the idea of data–belief 
asymmetries to highlight the difference between AI and human cognition, using the exam
ple of heavier-than-air flight to illustrate our arguments. Theory-based causal reasoning 
provides a cognitive mechanism for humans to intervene in the world and to engage in 
directed experimentation to generate new data. Throughout the article, we discuss the 
implications of our argument for understanding the origins of novelty, new knowledge, 
and decision making under uncertainty.
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Introduction
Artificial intelligence (AI) now matches or outperforms 
humans in any number of games, standardized tests, 
and cognitive tasks that involve high-level thinking and 
strategic reasoning. For example, AI engines can readily 
beat humans in chess, which, for decades, served as a 
key benchmark of AI capability (Simon 1985a, Bory 
2019). AI systems also now perform extremely well in 
complex board games that involve sophisticated negoti
ation, complex interaction with others, alliances, decep
tion, and understanding other players’ intentions (e.g., 
Ananthaswamy 2022). Current AI models also outper
form more than 90% of humans in various professional 
qualification exams, such as the bar exam in law and the 
certified public accountant exam in accounting (Achiam 
et al. 2023). AI has also made radical strides in medical 
diagnoses, beating highly trained medical professionals 
in diagnosing some illnesses (e.g., Zhou et al. 2023). 
These rapid advances have led some AI scholar to argue 
that even the most human of traits, such as consciousness, 

will soon be replicable by machines (e.g., Goyal and Ben
gio 2022, Butlin et al. 2023). In all, AI is rapidly devising 
algorithms that “think humanly,” “think rationally,” 
“act humanly,” and “act rationally” (Csaszar and Stein
berger 2022, pp. 2–3).

Given the astonishing progress of AI, Daniel Kahne
man (2018, pp. 609–610, emphasis added) asks (and 
answers) the logical next question: “Will there be any
thing that is reserved for human beings? Frankly, I don’t 
see any reason to set limits on what AI can do … And 
so it’s very difficult to imagine that with sufficient 
data there will remain things that only humans can 
do … You should replace humans by algorithms when
ever possible.”

Kahneman is not alone in this assessment. Davenport 
and Kirby (2016, p. 29) argue that “we already know 
that analytics and algorithms are better at creating 
insights from data than most humans” and “this 
human/machine performance gap will only increase.” 
Many scholars claim that AI is likely to outperform 
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humans in most—if not all—forms of reasoning and 
decision making (e.g., Legg and Hutter 2007, Morris et al. 
2023, Grace et al. 2024). Some argue that strategic deci
sion making might also be taken over by AI (Csaszar 
et al. 2024) or even that science itself will be automated 
by “AI scientists” (e.g., Lu et al. 2024, Manning et al. 
2024). One of the pioneers of AI, Geoffrey Hinton, argues 
that large language models (LLMs) already are sentient 
and intelligent and “digital intelligence” will inevitably 
surpass human “biological intelligence”—if it has not 
already done so (see Hinton 2023; also see Bengio et al. 
2023).

Compared with machines, the cognitive and compu
tational limitations of humans are obvious. Humans are 
biased (Kahneman 2011, Chater et al. 2018). Humans are 
selective about what data they attend to and sample, 
and they are susceptible to confirmation bias, motivated 
reasoning, and hundreds of other cognitive biases 
(nearly 200 as of last count). In short, humans are bound
edly rational—significantly hampered by their ability to 
compute and process information (Simon 1955), particu
larly compared with computers (cf. Simon 1990). And 
the very things that make humans boundedly rational 
and poor at decision making are seemingly the very 
things that enable computers to perform well on cogni
tive tasks. The advantage of computers and AI is that 
they can handle vast amounts of data and process it 
quickly and in powerful ways.

In this paper, we offer a contrarian view of AI relative to 
human cognition, including its implications for strategy, 
the emergence of novelty, and decision making under 
uncertainty. AI builds on the idea that cognition—by both 
machines and humans—is a generalized form of informa
tion processing: a type of input–output device. To illustrate 
cognitive differences between humans and computers, we 
use the example of large language models versus human 
language learning. We introduce the notion of data–belief 
(a)symmetry and the role this, respectively, plays in 
explaining AI and human cognition, using heavier-than- 
air flight as an extended example. Human cognition is for
ward-looking, necessitating data–belief asymmetries, 
which are manifest in theories, causal reasoning, and 
experimentation. We argue that human cognition is driven 
by forward-looking, theory-based causal logic, which is 
distinct from the emphasis AI and computational models 
of cognition place on prediction and backward-looking 
data. Theory-based causal reasoning enables the gener
ation of new and contrarian data, observations, and 
experimentation. We highlight the implications of these 
arguments for understanding the origins of novelty, new 
knowledge, and decision making under uncertainty.1

AI 5 Mind: Is Cognition Computation?
Modeling the human mind—thinking, rationality, and 
cognition—has been the central aspiration and ambition 

behind AI from the 1940s to the present (McCulloch and 
Pitts 1943, Turing 1948/1992; also see Simon 1955, Hin
ton 1992, McCorduck 2004, Perconti and Plebe 2020). As 
put by the organizers of the first conference on AI (held 
at Dartmouth in 1956), their goal was to “proceed on the 
basis of the conjecture that every aspect of learning or 
any other feature of intelligence can in principle be so 
precisely described that a machine can be made to simu
late it” (McCarthy et al. 2007, p. 12). The commonalities 
between models of AI and human cognition are not just 
historical, but these linkages have only deepened in the 
intervening decades (for a review, see Sun 2023; also see 
Laird et al. 2017). Computation also underlies many 
other models of cognition, including the concept of men
tal models (Johnson-Laird 1983), the Bayesian brain, and 
predictive coding or processing (e.g., Friston and Kiebel 
2009; Hohwy 2013, 2020). In fact, cognitive scientist 
Johnson-Laird (1983, p. 477) goes so far as to argue that 
“any scientific theory of the mind has to treat it as an 
automaton.”

AI sees cognition as a general form of computation, 
specifically in which “human thinking is wholly 
information-processing activity” (Feigenbaum 1963, p. 
249; also see Simon 1980). This logic is also captured by 
computational neuroscientist David Marr (1982, p. 4), 
who states that “most of the phenomena that are central 
to us as human beings—the mysteries of life and evolu
tion, of perception and feeling and thought—are primar
ily phenomena of information processing” (cf. Hinton 
2023). Both mind and machine are a type of generalized 
input–output device, in which inputs such as stimuli 
and cues (data) are processed to yield varied types of 
outputs, including decisions, capabilities, behaviors, 
and actions (Simon 1980, 1990; McClelland and Rumel
hart 1981; Hasson et al. 2020). This general model of 
information processing has been applied to any number 
of issues and problems at the nexus of AI and cognition, 
including perception, learning, memory, expertise, 
search, and decision making (cf. Russell and Norvig 
2022). Furthermore, the idea of human mental activity as 
computation is pervasive in evolutionary arguments. 
For example, Cosmides and Tooby (2013, pp. 202–203) 
focus on the “information-processing architecture of the 
human brain” and further argue that “the brain is a com
puter, that is, a physical system that was designed to 
process information.”

Now, our overall purpose is not to exhaustively 
review models of AI and cognition, particularly as excel
lent reviews can be found elsewhere (e.g., Goodfellow 
et al. 2016, Aggarwal 2018, Russell and Norvig 2022). 
Rather, we simply want to point out the strong emphasis 
that past, current, and ongoing research places on the 
similarities between models of AI and human cognition. 
To assure the reader that we are not creating a caricature 
of existing work, we have provided relevant, additional 
detail about AI-cognition similarities in the appendix. 
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There, we more exhaustively point out examples of how 
scholars—from the 1950s to the present—have sought to 
create an equivalence between AI, machines, and 
human cognition. In all of this work, cognition and com
putation (and AI) are seen as deeply connected: the 
underlying premise of this work is that machines and 
humans are a form of input–output device, in which the 
same underlying mechanisms of information processing 
and learning are at play. The focus on computation and 
information processing also is the axiomatic basis for the 
concept of bounded rationality (for a review, see Felin 
et al. 2017). Bounded rationality focuses on human 
“computational capacities” and their limits (Simon 1955, 
p. 99), and this idea has deeply shaped fields such as eco
nomics, decision theory, strategy, and the cognitive 
sciences (e.g., Chater et al. 2018, Kahneman 2003, Pura
nam et al. 2015, Gigerenzer and Goldstein 2024).

We disagree with the idea that AI and human cogni
tion share significant similarities as forms of computa
tion for reasons to be discussed next. That said, our aim 
in making this claim is not to take away from the exciting 
breakthroughs in AI. Rather, we highlight how the anal
ogy between AI and humans quickly breaks down 
when it comes to understanding the mind and cognition 
with important derivative consequences for how we 
think about the emergence of novelty, new knowledge, 
and decision making under uncertainty. In the next sec
tion, we delve into a specific example, namely, language 
learning by machines versus humans, to enable us to 
make this point more carefully.

Machine vs. Human Learning: Different Inputs, 
Different Outputs
While the input–output model of minds and machines— 
whether we are talking about symbolic or subsymbolic 
approaches (see the appendix for further detail)—has 
been a central emphasis of AI and cognitive science, 
next we highlight some important differences between 
machine learning and human learning. An apt context 
for highlighting these differences is to focus on language. 
Language arguably is “the most defining trait of human 
cognition (language and its relation with thought),” and 
therefore, it “can be a true ‘window into the mind’” 
(Chomsky and Gallega 2020, p. 321; also see Pinker 
1994).2 Language provides an important test and context 
for understanding human and artificial intelligence. Fur
thermore, some have already argued that large language 
models are sentient with a few even arguing that they 
already closely mirror or exceed human cognition (e.g., 
Binz and Schulz 2023, Hinton 2023)—an assumption that 
we challenge.

At the most basic level, to study any system and its 
behavior, we need to understand its inputs and outputs. 
Turing (1948/1992) argued that any form of intelligence, 
whether human or machine, can be studied as an 
input–output system. In discussing the possibilities of 

artificial intelligence—or “intelligent machinery” as he 
called it—Turing (1950, p. 456, emphasis added) made 
the analogy to an “untrained infant brain,” saying an 
infant brain is largely a blank slate, “something like a 
notebook” with “little mechanism, and lots of blank 
sheets” (cf. Turing 1948/1992). According to Turing, 
these blank sheets are (or need to be) filled with inputs 
via the process of training and education. Through the 
early course of its life, an infant or child is taught and 
receives inputs in the form of language and spoken 
words that it hears and encounters. Education and train
ing represent the inputs that eventually account for 
human linguistic capacities and outputs. And in the 
same way, Turing (1948/1992, p. 107) argues, one can 
think of an “analogous teaching process applied to 
machines,” where machines learn from their inputs. 
Turing lists various settings in which a thinking machine 
might show that it has learned—including games such 
as chess or poker, cryptography, or mathematics—and 
he argues that the “learning of languages would be the 
most impressive, since it is the most human of these 
activities” (Turing 1948/1992, p. 117). As human and 
machine learning are often seen as a similar process, we 
next focus on key differences using language learning as 
our example. We then highlight the implications of these 
differences in learning for decision making and knowl
edge generation both in scientific and economic 
contexts.

How Machines Learn Language. To illustrate the pro
cess of machine learning, next we carefully consider 
modern LLMs and how they learn. LLMs offer a useful 
instantiation of machine learning. Learning is essentially 
generated from scratch—bottom up, directly from the 
data—through the introduction of vast amounts of train
ing data and the algorithmic processing of the statistical 
associations and interactions among that data. In the 
context of an LLM, the training data are composed of 
enormous amounts of words and text, pulled together 
from various public sources and the internet. To appreci
ate just how much data and training these models incor
porate, the latest LLMs (as of early 2024) are estimated to 
include some 13 trillion tokens (a token being the rough 
equivalent of a word). To put this into context, if a 
human tried to read this text—say at a speed of 9,000 
words/hour (150 words/minute)—it would take more 
than 164,000 years to read the 13 trillion words of a train
ing data set.

The vast corpus of text used to train an LLM is toke
nized to enable natural language processing. This typi
cally involves converting words (or subword units or 
characters) into numerical sequences or vectors. To 
illustrate, a sentence such as “The cat sat on the mat” 
might be tokenized into a sequence such as [10, 123, 56, 
21, 90, 78]. Each token is passed through an embedding 
layer, which converts the token into a dense vector 
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representation that captures semantic information, such 
as its frequency and positional embedding. The embed
ding layer has its own set of parameters (weights) that 
are learned during training. The attention mechanism 
introduced with the transformer architecture (Vaswani 
et al. 2017), touched on by us previously, allows the 
model to consider each token in the context of all other 
surrounding tokens and thus to gain an understanding 
of the wider context. Deep artificial neural networks 
have turned out to be extremely general and applicable 
not just to text, but to varied domains such as image rec
ognition and computer vision, including multimodal 
applications that combine various types of data (for exam
ple, enabling the creation of images from text prompts).3

From the vast data that serves as its training input, the 
LLM learns associations and correlations between vari
ous statistical and distributional elements of language: 
specific words relative to each other, their relationships, 
ordering, frequencies, and so forth. These statistical 
associations are based on the patterns of word usage, 
context, syntax, and semantics found within the training 
data set. The model develops an understanding of how 
words and phrases tend to co-occur in varied contexts. 
The model does not just learn associations, but also 
understands correlations between different linguistic 
elements. In other words, it discerns that certain words 
are more likely to appear in specific contexts.

Now, whereas the above is not a technical introduc
tion to LLMs, it offers the broad outlines of the process to 
the degree that it is relevant for our argument (for a 
detailed review, see Naveed et al. 2023, Chang et al. 
2024, Minaee et al. 2024; also see Resnik 2024). The end 
result of this training is an AI model that is capable of 
language: more specifically, the model is capable of gen
erating fluent and coherent text by using a stochastic 
approach of next word prediction in response to a 
prompt. In short, LLM outputs are based on conditional 
probabilities given the structure of the inputs they have 
encountered in their training data.

Based on this broad outline of how an LLM is trained, 
we compare this to how humans learn language. We 
should reiterate, as discussed at the outset of this article, 
that the basic premise behind models of AI is that there 
is a symmetry between how machines and humans 
learn. We think it is important to carefully point out dif
ferences as these provide the foundation for our subse
quent arguments about cognition and the emergence of 
novelty.

How Humans Learn Language Compared with Machines. 
The differences between human and machine learning— 
when it comes to language (as well as other domains)— 
are stark. Whereas LLMs are introduced to and trained 
with trillions of words of text, human language training 
happens at a much slower rate. To illustrate, a human 
infant or child hears—from parents, teachers, siblings, 

friends, and their surroundings—an average of roughly 
20,000 words a day (e.g., Hart and Risley 2003, Gilker
son et al. 2017). So, in its first five years, a child might 
be exposed to—or trained with—some 36.5 million 
words. By comparison, LLMs are trained with trillions 
of tokens within a short time interval of weeks or months.4

The inputs differ radically in terms of quantity (sheer 
amount) and also in terms of their quality.5 Namely, the 
spoken language to which an infant or young child is 
(largely) exposed is different from the written language 
on which an LLM is trained. Spoken language differs 
significantly from written language in terms of its 
nature, structure, and purpose. Here, the research on the 
differences between spoken and written language is 
highly instructive (e.g., Biber 1991). Spoken language is 
spontaneous (not meaningfully edited), informal, repeti
tive, and often ephemeral. Written language—on the 
other hand—is visual and permanent, more carefully 
crafted, planned, and edited. It is also denser, featuring 
more complex vocabulary (e.g., Halliday 1989, Tannen 
2007). Importantly, the functional purposes and uses of 
spoken versus written language also differ significantly. 
Spoken language is immediate, interactive, focused on 
coordinating, expressing, and practically doing things. 
Whereas written language also serves these purposes, 
the emphasis is more on the communication of complex 
information. The vast bulk of the training data of the 
LLM is not conversational (for models trained on spoken 
language or raw audio, see Lakhotia et al. 2021). Rather, 
written language is more carefully thought out. An LLM 
is likely to be trained with the works of Shakespeare and 
Plato, academic publications, public domain books (e.g., 
from Project Gutenberg), lyrics, blog posts, news articles, 
and various material from the internet. These data are 
far cleaner, far more correct grammatically, and orga
nized. Arguably the inputs received by an LLM—in the 
form of written, edited, and published text—are linguis
tically far superior. In a statistical sense, LLM training 
data contain less noise and thus offer greater predictive 
power. Even the vast stores of Wikipedia articles that are 
included in most LLM training data sets are the end 
result of thousands of edits to ensure readability, accu
racy, and flow.

Clearly, humans learn language under different con
ditions and via different types of inputs. In short, it can 
readily be argued that the human capacity for language 
develops differently from how machines learn language 
in both quantity and quality. Humans (somehow) learn 
language from extremely sparse, impoverished, and 
highly unsystematic inputs and data (Chomsky 1975). 
Compared with LLMs, human linguistic capabilities are 
radically “underdetermined” by the inputs. That is, the 
relatively sparse linguistic inputs can scarcely account 
for the radically novel outputs generated by humans.6

Beyond the quantitative and qualitative differences in 
inputs (when it comes language learning by LLMs 
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versus humans), it is important to compare the linguistic 
outputs and capabilities of machines versus humans. In 
terms of output, LLMs are said to be generative (the 
acronym GPT stands for generative pretrained 
transformer).

But in what sense are LLMs generative? They are gen
erative in the specific sense that they are able to create 
novel outputs by probabilistically sampling from the 
vast combinatorial possibilities in the associational and 
correlational network of word frequencies, positional 
encodings, and co-occurrences encountered in the train
ing data (Vaswani et al. 2017).7 The LLM is generative in 
the sense that the text that is produced is not simply pla
giarized or copied verbatim from existing sources con
tained in the pretraining data (McCoy et al. 2023). In the 
process of generating text, the parameters (weights and 
biases) determine how much influence different parts 
of the training data probabilistically have on the 
output. For example, in a sentence-completion task, the 
weights—developed from the corpus of the training 
data—help the model decide which words are most 
likely to come next based on the context provided by the 
input. The output is statistically derived (or, put differ
ently, probabilistically drawn) from the training data’s 
underlying linguistic structure. The outputs, therefore, 
have compositional novelty (in terms of novel ways of 
saying the same thing—more on this below), and they 
also manifest some analogical generalization (McCoy 
et al. 2023). That said, any assessment of how good an 
LLM is needs to recognize “the problem that [LLMs] 
were trained to solve: next-word prediction” (McCoy 
et al. 2024, p. 4). And as next-word prediction engines, 
LLMs certainly demonstrate exceptional capabilities.

Beyond Mirroring: Can AI Generate 
Genuine Novelty?
So far we have summarized the central elements of a 
particular AI system—an LLM—and compared it with 
humans. Next, we further address whether an AI can be 
said to be intelligent and whether it can generate genu
ine novelty and new knowledge. Whereas our focus 
remains on LLMs, we extend our arguments to other 
forms of AI and cognitive approaches that focus on data 
and prediction. We concurrently raise questions about 
whether an AI system meaningfully can originate new 
knowledge and engage in decision making under 
uncertainty.

AI: Intelligence and New Knowledge?
As we foreshadow above, an AI such as an LLM seems 
to mirror the inputs with which it has been trained rather 
than meaningfully manifest some form of intelligence. 
But beyond next-word prediction and linguistic fluency, 
could an LLM do a better job than humans in decision 
making under uncertainty (e.g., Csaszar et al. 2024; cf. 

Kahneman 2018), or could an LLM or AI scientist per
haps even automate science itself (e.g., Lu et al. 2024, 
Manning et al. 2024; also see Kıcıman et al. 2023; Agra
wal et al. 2023, 2024)?8

Without question, LLMs seem to manifest sparks of 
intelligence. But intelligence is not simply memorization 
or the ability to restate or paraphrase information in var
ious ways. We argue that LLMs appear intelligent 
because they capitalize on the fact that the same thing 
can be stated, said, and represented in indefinite ways. 
This is readily illustrated by the fact that the revolution
ary breakthrough that gave rise to LLMs—the trans
former architecture—was developed in the context of 
language translation (Vaswani et al. 2017). In an impor
tant sense, LLMs can be seen as translation generalized. 
They represent a generalized technology for translating 
one way of saying things into another way of saying the 
same thing. Translation, after all, is an effort to represent 
and accurately mirror something in a different way—to 
represent the same thing in a different language or with 
a different set of words or more abstractly: to represent 
the same thing in a different format. LLMs serve this rep
resentational and mirroring function remarkably well. 
This representational and mirroring function from lan
guage to language is generalized to a process that takes 
one way of saying something and generates another 
way of saying the same thing. Stochastic next-word pre
diction using conditional probabilities—based on the 
weights and parameters derived from vast training data 
sets—allows for surprisingly rich combinatorial out
puts. The learning of the LLM is embodied in the rela
tionships found between words that are sampled to 
enable stochastic generativity, in which the outputs mir
ror past inputs. With vast data, an LLM is good at prob
abilistically and fluently predicting the next word. But, 
as we discuss, the fluency with which LLMs seem to pre
dict and generate outputs dupes us into seeing them as 
intelligent, as if they are engaging in far more than mere 
mirroring or translation.

Before revisiting our question of whether an AI such 
as an LLM could actually originate novelty or engage in 
some form of forward-looking decision making, it is 
worth highlighting metaphorical similarities between 
AI and cognitive architectures based on prediction. For 
example, consider a cognitive approach such as predic
tive processing (Pezzulo et al. 2024), which shares broad 
similarities with active inference, the free energy princi
ple, the Bayesian brain, and predictive coding. At a high 
level, both LLMs and predictive processing seek to 
engage in a similar process, namely, error minimization 
and iterative optimization, in which the systems are 
essentially navigating a high-dimensional space to find 
a state that minimizes both error and surprise. LLMs 
learn from the training data, and predictive processing 
learns from its environment (cf. Hohwy 2020). LLMs 
aim to reduce the difference between their probabilistic 
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predictions (the next word in a sentence) and the actual 
outcomes (the real next word), thereby improving their 
accuracy. Predictive processing, as a cognitive theory, 
posits that the brain continuously predicts sensory input 
and minimizes the error between its predictions and 
actual sensory input. The capability of each to predict— 
whether a word or a perception—is a function of past 
inputs. Large language models seek to predict the most 
likely next word based on training data, and active infer
ence seeks to predict the most likely next percept or 
action. Both approaches are wildly conservative (tied to 
past data) as they seek to reduce surprise—or to engage 
in prediction as error minimization (Hohwy 2013).9
Back-propagation, a fundamental mechanism in train
ing neural networks, and the concept of error minimiza
tion in predictive processing (Friston and Kiebel 2009) 
share a broad conceptual similarity in that both involve 
iterative adjustments to minimize some form of error or 
discrepancy. Both generate a prediction based on past 
inputs. Both back-propagation and error minimization 
in predictive processing involve adjusting an internal 
model (neural network weights in AI and hierarchical 
brain models in neuroscience) to reduce error (or, in 
machine learning terms, minimize the loss function).

With this architecture—focused on error minimiza
tion and surprise reduction—can an LLM or any 
prediction-oriented, cognitive AI truly generate some 
form of new knowledge? Beyond memorizing, translat
ing, restating, or mirroring the text with which it has 
been trained, can an LLM generate new knowledge?

We do not believe LLMs or input–output–based cog
nitive systems can do this—at least not beyond random 
flukes that might emerge because of their stochastic 
nature.10 There is no forward-looking mechanism or 
unique causal logic built into these systems. It is impor
tant to clearly delineate why this is the case as some 
argue and anticipate that LLMs will replace human deci
sion makers in uncertain contexts such as strategy and 
even science itself. For example, Csaszar et al. (2024) 
argue that “the corpora used to train LLMs include 
valuable information for SDM, such as consumer prefer
ences, competitor information, and strategy knowledge” 
and point to how an AI can use various decision-making 
tools to generate business plans and strategy (Csaszar et al. 
2024, p. 2). And Manning et al. (2024) even argue that 
LLMs will automate social science given their seeming 
ability to generate hypotheses and causal models, includ
ing testing them (also see Lu et al. 2024).

These claims are vastly overstated. One way to think 
about this is that a prediction-oriented AI such as an 
LLM can essentially be seen as possessing Wikipedia- 
level knowledge. On any number of topics (if contained 
in the training data), an LLM can summarize, represent, 
and mirror the words it has encountered in various dif
ferent and new ways. On any given topic—again, if suf
ficiently represented in the training data—an LLM can 

generate indefinite numbers of coherent, fluent, and 
well-written Wikipedia articles by drawing on the con
ditional probabilities it has learned. But, just as a subject- 
matter expert is unlikely to learn anything new about 
the expert’s specialty from a Wikipedia article within the 
expert’s domain of expertise, an LLM is unlikely to 
somehow bootstrap knowledge beyond the combinato
rial possibilities of the word associations it has encoun
tered in the past. It has no forward-looking mechanism 
for doing so.

There is also good evidence to suggest that when an 
LLM encounters (is prompted with) a reasoning task, it 
merely reproduces the linguistic answers (about reason
ing) it has encountered in the training data rather than 
engaging in any form of actual, on-the-fly reasoning. If 
the wording of a reasoning task—such as the Wason 
selection task or the Monty Hall problem—is changed 
only slightly, LLM performance declines significantly 
below human performance, and the mistakes of the 
LLM are glaringly obvious to humans (e.g., Hong et al. 
2024). LLMs are not meaningfully engaged in any form 
of real-time reasoning (as assumed by Lu et al. 2024, 
Manning et al. 2024). Rather, they are merely repeating 
the word structures associated with reasoning, which 
they have encountered in the training data. This effect 
can also be shown empirically as training LLMs on their 
past output leads to a rapid decline in performance and 
even their collapse (Shumailov et al. 2024). Importantly, 
LLMs memorize and regurgitate the words associated 
with reasoning but do not engage in on-the-fly reason
ing of any sort.11 This is why Francois Chollet (2019) 
created the “abstraction and reasoning corpus” as a chal
lenge or test to see if an AI system can actually solve new 
problems (that is, problems it has not encountered in its 
training data) without merely resorting to memorized 
answers and solutions encountered in the past (which 
captures the present state of AI systems, including 
LLMs).12

That said, our goal is not to dismiss the remarkable 
feats of LLMs or other forms of AI or applications of 
machine learning. The fact that an LLM can outperform 
most humans in varied types of tests and exams is 
remarkable (Achiam et al. 2023). But this is because it has 
encountered this information, memorized it, and is able 
to repeat it in fluent ways. An LLM essentially has a 
superhuman capacity for memorization and an ability to 
summarize memorized word structures in diverse 
ways. In all, certainly the idea of LLMs as “stochastic 
parrots” or “glorified auto-complete” (Bender et al. 
2021) underestimates their ability. But, equally, ascrib
ing LLMs the ability to actually reason and generate 
new knowledge vastly overestimates their ability. LLMs 
are essentially powerful and creative imitation engines 
in stochastically and probabilistically assembling words 
though not linguistically innovative compared with 
children (see Yiu et al. 2023). The idea that LLMs 
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somehow generate new-to-the-world knowledge—or 
feature something like human consciousness—seems to 
be a significant stretch (though, see Butlin et al. 2023, 
Hinton 2023). In sum, the generativity of these models is 
a type of lowercase “g” generativity that shows up in the 
form of the unique sentences that creatively summarize 
and repackage existing knowledge.

To illustrate the problem of generating something 
novel—such as new knowledge—with an LLM, imagine 
the following thought experiment. Imagine an LLM in 
the year 1633, where the LLM’s training data incorpo
rates all the scientific and other texts published by 
humans to that point in history. If the LLM were asked 
about Galileo’s heliocentric view, how would it respond? 
Because the LLM would probabilistically sample from 
the association and correlation-based word structure of 
its vast training data—again, everything that has so far 
been written (including all the scientific writings about 
the structure of the cosmos)—it would only restate, rep
resent, and mirror the accumulated scientific consensus. 
The training data set for the LLM would overwhel
mingly feature texts with word structures supporting a 
geocentric view in the form of the work of Aristotle, Ptol
emy, and many others. Ptolemy’s careful trigonometric 
and geometric calculations, along with his astronomic 
observations, would be included in support of a geocen
tric view as represented in the many texts that would 
have summarized the geocentric view (such as de Sacro
bosco’s popular textbook De saphera mundi). These texts 
would feature word associations that highlight how the 
motions and movements of the planets could be pre
dicted with remarkable accuracy with the predominant 
geocentric view. The evidence—as inferred from the 
repeated word associations found in the training data— 
would overwhelmingly be against Galileo. LLMs do not 
have any way of accessing truth (for example, through 
experimentation or counterfactuals) beyond mirroring 
and restating what is found in the text.

Even if alternative or heretical views were included in 
the training data (such as the work of Copernicus even 
though his work was largely banned), the logic of this 
work would be dwarfed by all the texts and materials 
that supported the predominant geocentric paradigm.13

The overwhelming corpus of thousands of years of geo
centric texts would vastly outweigh Galileo’s view or 
anything supporting it. An LLM’s model of truth or 
knowledge is solely statistical, relying on frequency and 
probability. Outputs are influenced by the frequency 
with which an idea is mentioned in the training data as 
reflected by associated word structures. For example, 
the frequency with which the geocentric view has been 
mentioned, summarized, and discussed in the training 
data necessarily imprints itself onto the output of the 
LLM as truth. As the LLM has no actual grounding in 
truth beyond the statistical relationships between 
words, it would say that Galileo’s view and belief is 
delusional and in no way grounded in science.

A neural network such as an LLM might, in fact, 
include any number of delusional beliefs, including 
beliefs that turned out to eventually be correct (such as 
Galileo’s) and also beliefs that objectively were (and still 
are) delusional. Ex ante, there is no way for an LLM to 
arbitrate between the two. For example, the eminent 
astronomer Tyco Brahe made and famously published 
extensive claims about astrology, the idea that celestial 
bodies and their movement directly impact individual 
human fates as well as political and other affairs. His 
astrological writings were popular not just among some 
scientists, but also among the educated elite. A hypo
thetical LLM (in 1633) would have no way of arbitrating 
between Galileo’s (seeming) delusions about heliocentr
ism nor Brahe’s (actual) delusions about astrology. Our 
hypothetical LLM would be far more likely to have 
claimed that Brahe’s astrological claims are true than 
that Galileo’s argument about heliocentrism is true. The 
LLM can only represent and mirror the predominant 
and existing conceptions—in this case, the support for 
the geocentric view of the universe—it finds in the fre
quencies and statistical association of words in its train
ing data.

In sum, it is important to recognize that the way an 
LLM gets at truth and knowledge is via a statistical exer
cise of finding more frequent mentions of (hopefully) a 
true claim (in the form of statistical associations between 
words) and less frequent mentions of a false claim. LLM 
outputs are probabilistically drawn from the statistical 
associations of words it has encountered when being 
trained. When an LLM makes truthful claims, these are 
an epiphenomenon of the fact that true claims happened 
to have been made more frequently. There is no other 
way for the LLM to assess truth or to reason. Truth—if it 
happens to emerge—is a byproduct of statistical pat
terns and frequencies rather than from the LLM develop
ing an intrinsic understanding of—or ability to bootstrap 
or reason—what is true or false in reality.

Some LLMs have sought to engineer around the prob
lem of their frequency-based and probabilistic approach 
by creating so-called “mixture of experts” models in 
which the outputs are not simply the average result of 
outrageously large neural networks, but can be fine- 
tuned toward some forms of expertise (Shazeer et al. 
2017, Du et al. 2022). Another approach is retrieval- 
augmented generation, which uses the general linguistic 
abilities of the LLM but limits the data used for predic
tion to a confined and preselected set of sources (Lewis 
et al. 2020). Furthermore, ensemble approaches—which 
combine or aggregate diverse architectures or outputs— 
have also been developed (Friedman and Popescu 2008, 
Russell and Norvig 2022). However, even here, the out
puts would necessarily also be reflective of what any 
particular experts have said within the training data 
rather than any form of forward-looking projection 
or on-the-fly causal reasoning on the part of the LLM. 
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This problem is further compounded in situations that 
are characterized by high levels of uncertainty and nov
elty (such as many forms of decision making), in which 
the idea of expertise or even bounded rationality is hard 
to specify given an evolving and changing world (Felin 
et al. 2014).14

Finally, it is critically important to keep in mind that 
the inputs of any LLM are past human inputs, and there
fore, outputs also roughly represent what we know so 
far. Inherently an LLM cannot go beyond the realms cov
ered by the inputs. There is no mechanism to somehow 
bootstrap forward-looking beliefs about the future—or 
causal logic or knowledge—beyond what can be inferred 
from the existing statistical associations and correlations 
found in the words in the training data.

The Primacy of Data vs. Data–Belief Asymmetry
The central problem we have highlighted so far is that 
learning by machines and AI is necessarily backward 
looking and imitative. Again, this should not be read as 
a critique of these models, rather, merely as a description 
of their structural limits. Whereas they are useful for 
many things, an AI model—such as an LLM—is not able 
to generate new knowledge or solve new problems. An 
LLM does not reason. And an LLM has no way of postu
lating beyond what it has encountered in its training 
data. Next, we extend this problem to the more general 
emphasis on the primacy of data within both AI and cog
nitive science. Data itself, of course, is not the problem. 
Rather, the problem is that data are used in a theory- 
independent fashion (Anderson 2008). To assure the 
reader that we are not caricaturing existing AI-linked 
models of cognition by simply focusing on LLMs, 
we also extend our arguments into other forms of 
cognitive AI.

The general emphasis on minds and machines as 
input–output devices places a primary emphasis on 
data. This suggests a model in which data—such as 
cues, stimuli, text, images—essentially are read, learned, 
and represented by a system, whether it is a human or 
computational one. The world (any large corpus of 
images, text, or environment) has a particular statistical 
and physical structure, and the goal of a system is to 
accurately learn from it and reflect it. This is said to be 
the very basis of intelligence. As put by Poldrack (2021, 
p. 1307, emphasis added), “Any system that is going to 
behave intelligently in the world must contain represen
tations that reflect the structure of the world” (cf. Yin 2020). 
Neural network–based approaches and machine learn
ing with their emphasis on bottom-up representation 
offer the perfect mechanism for doing this because they 
can “learn directly from data” (Lansdell and Kording 
2019; also see Baker et al. 2022). Learning is data- 
driven.15 Of course, cognitive systems may not be able to 
learn perfectly, but an agent or machine can “repeatedly 
interact with the environment” to make inferences about 

its nature and structure (Binz et al. 2023). This is the 
basis of “probabilistic models of behavior,” which view 
“human behavior in complex environments as solving a 
statistical inference problem” (Tervo et al. 2016).16

Bayesian cognition also posits that learning by 
humans and machines can be understood in terms of 
probabilistic reasoning about an environment as cap
tured in Bayesian statistical methods (e.g., Griffiths et al. 
2010). This framework conceptualizes sensory inputs, 
perceptions, and experiential evidence as data, which 
are continuously acquired from the environment and 
then used to update one’s model of the world (or of a 
particular hypothesis). The cognitive process involves 
sampling from a probability distribution of possible 
states or outcomes, informed by incoming data. Cru
cially, Bayesian and related approaches to cognition 
emphasize the dynamic updating of beliefs by which 
prior knowledge (a prior) is integrated with new evi
dence to revise beliefs (posterior) in a process mathemat
ically described by the Bayesian formula (Pinker 2021). 
This iterative updating, reflecting a continual learning 
process, acknowledges and quantifies uncertainty, fram
ing understanding and decision making as inherently 
probabilistic. This probabilistic architecture is (very 
broadly) also the basis of large swaths of AI and the cog
nitive sciences.

It is worth reflecting on the epistemic stance—or 
underlying theory of knowledge—that is presumed 
here. Knowledge is traditionally defined as justified 
belief, and belief is justified by data and evidence. As 
suggested by Bayesian models, we believe or know 
things to the extent to which we have data and evidence 
for them (Pinker 2021). Beliefs should be proportionate 
to the evidence at hand because agents are better off if 
they have an accurate representation or conception of 
their environment and the world (e.g., Schwöbel et al. 
2018).17 Knowledge can be seen as the accumulated 
inputs, data, and evidence that make up our beliefs. And 
the strength or degree of any belief should be symmetri
cal with the amount of supporting data or, put differ
ently, the weight of the evidence (Pinker 2021; also see 
Griffin and Tversky 1992, Kvam and Pleskac 2016, Das
gupta et al. 2020). This is the foundation of probabilistic 
models of cognitive systems. These approaches focus 
on “reverse-engineering the mind”—from inputs to 
outputs—and they “[forge] strong connections with the 
latest ideas from computer science, machine learning, 
and statistics” (Griffiths et al. 2010, p. 363). Overall, this 
represents a relatively widely agreed upon epistemic 
stance, which also matches an input–output–oriented 
“computational theory of mind” (e.g., Rescorla 2015) in 
which humans or machines learn “through repeated 
interactions with an environment”—without “requiring 
any a priori specifications” (Binz et al. 2023). One way to 
summarize the above literature is that there needs to be 
a symmetry between one’s belief and the corroborating 
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data. A rational decision maker will form (and weight) 
beliefs about any given thing by taking into account the 
available data and evidence.

But what about edge cases? That is, what about situa
tions in which an agent correctly takes in all the data and 
evidence yet somehow turns out to be wrong? Models 
based on rational information processing do not offer a 
mechanism for explaining change or new knowledge or 
an explanation of situations in which data and evidence- 
based reasoning might lead to poor outcomes (cf. Felin 
and Koenderink 2022). Furthermore, whereas learning- 
based models of knowledge enable belief updating 
based on new evidence, there is no mechanism for 
explaining where new data comes from or what data 
should be considered as relevant and what data should 
be ignored. And what if the data and evidence are con
tested? This is a particularly significant problem in con
texts that feature rampant uncertainty, including any 
type of forward-looking decision making and scientific 
reasoning.

Explaining the emergence of novelty and new knowl
edge is highly problematic for computational, input–output 
models of cognition that assume what we call data–belief 
symmetry. The basis of knowledge is the quest for truth 
(Pinker 2021), which is focused on existing evidence and 
data. But we argue that data–belief asymmetry, in fact, is 
essential for the generation of new knowledge and asso
ciated decision making. The existing literature in the cog
nitive sciences focuses on one side of the data–belief 
asymmetry, namely, its downside: the negative aspects 
of data–belief asymmetries (e.g., Kunda 1990, Scheffer 
et al. 2022). This downside includes all the ways in which 
humans persist in believing something despite seem
ingly clear evidence to the contrary (Pinker 2021). This 
includes a large literature that focuses on human biases 
in information processing—the suboptimal and biased 
ways that humans process, perceive, and use data and 
fail to appropriately update their beliefs. This is evident 
in the vast literatures that focus on various data-related 
pathologies and biases, including motivated reasoning, 
confirmation bias, selective perception and sampling, 
and the availability bias. The emphasis on erroneous 
beliefs and human bias has powerfully influenced how 
we think about human nature and decision making 
within various social and economic domains (e.g., Kah
neman 2011, Bénabou and Tirole 2016, Chater 2018, Gen
naioli and Shleifer 2018, Kahneman et al. 2021, Bordalo 
et al. 2023).

But what about the positive side of data–belief asym
metry? What about situations in which beliefs appear 
delusional and distorted—seemingly contrary to estab
lished evidence and facts—but in which these beliefs, 
nonetheless, turn out to be correct? Here, we are specifi
cally talking about beliefs that may outstrip, ignore, and 
go beyond existing evidence. Forward-looking, contrar
ian views are essential for the generation of novelty and 

new knowledge. Because of the statistical and past- 
oriented nature of AI-based computational and cogni
tive systems (focused on correlations, associations, and 
averages from past data), they are not able to project or 
reason forward in contrarian ways given the implicit 
insistence on symmetry between data and beliefs. 
That said, notice that—as we discuss—our focus on 
data–belief asymmetries is not somehow data indepen
dent or untethered from reality. Rather, this form of 
data–belief asymmetry is forward-looking as beliefs and 
causal reasoning enable the identification of new data 
and experimental interventions and the eventual verifi
cation of beliefs that previously were seen as the basis of 
distortion or delusion.

To offer a practical and vivid illustration of how 
data–belief symmetry can be problematic, consider the 
beliefs that were held about the plausibility of heavier- 
than-air human-powered and controlled flight in the 
late 1800s and early 1900s. (We introduce this example 
here and revisit it throughout the remainder of the man
uscript.) To form a belief about the possibility of human- 
powered flight—or even to assign it a probability—we 
would first want to look at the existing data and evi
dence. So what was the evidence for the plausibility of 
human-powered flight at the time? The most obvious 
data point at the time was that human-powered flight 
was not a reality. This alone, of course, would not negate 
the possibility. So one might want to look at all the data 
related to human flight attempts to assess its plausibility. 
Here we would find that humans have tried to build fly
ing machines for centuries, and flight-related trials had, 
in fact, radically accelerated during the 19th century. All 
of these trials of flight could be seen as the data and evi
dence we should use to update our beliefs about the 
implausibility of flight. All of the evidence clearly sug
gested that a belief in human-powered flight was delu
sional. A delusion can readily be defined as having a 
belief contrary to evidence and reality (Pinker 2021, 
Scheffer et al. 2022): a belief that does not align with 
accepted facts. In fact, the Diagnostic and Statistical Man
ual of Mental Disorders, 4th and 5th editions—the authori
tative manual for mental disorders—defines delusions 
as “false beliefs due to incorrect inference about external 
reality” or “fixed beliefs that are not amenable to change 
in light of conflicting evidence.”

Notice that many people at the time—naïvely, it was 
thought—pointed to birds as evidence for the belief that 
humans might also fly. This was a common argument.18

But the idea that bird flight somehow provided hope 
and evidence for the plausibility of human flight was 
seen as delusional by scientists and put to bed by the 
prominent scientist Joseph LeConte (1888, p. 69), who 
argued that flight was “impossible, in spite of the testi
mony of birds.” Like a good scientist and Bayesian, 
LeConte appealed to the data to support his claim. He 
looked at bird species—those that fly and those that do 

Felin and Holweg: AI, Human Cognition, and Causal Reasoning 
Strategy Science, Articles in Advance, pp. 1–26, © 2024 The Author(s) 9 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
01

:6
80

:c
d0

1:
ec

10
:5

9a
e:

ba
b6

:e
67

7:
2b

e9
] 

on
 0

4 
D

ec
em

be
r 

20
24

, a
t 1

3:
41

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



not—and concluded “there is a limit of size and weight 
of a flying animal.” According to LeConte, weight was 
the critical determinant of flight. With his data, he clearly 
pointed out that no bird above the weight of 50 pounds 
is able to fly and thus concluded that humans cannot fly. 
After all, large birds such as ostriches and emus are 
flightless. And even the largest flying birds, he argued— 
such as turkeys and bustards—“rise with difficulty” and 
“are evidently near the limit” (LeConte 1888, pp. 69–76). 
Flight and weight are correlated. To this, Simon New
comb (1901, p. 435)—one of the foremost astronomers 
and mathematicians of the time—added that “the most 
numerous fliers are little insects, and the rising series 
stops with the condor, which, though having much less 
weight than a man, is said to fly with difficulty when 
gorged with food.”

The emphasis that LeConte placed on the weight of 
birds to disprove the possibility of human-powered 
flight highlights one of the problems with data and belief 
updating based on evidence. It is hard to know what 
data and evidence might be relevant for a given belief or 
hypothesis. The problem is—as succinctly put by 
Polanyi (1958, p. 31)—that “things are not labeled evi
dence in nature.” Is the fact that small birds can fly and 
large birds cannot fly relevant to the question of whether 
humans can fly? What is the relevant data and evidence 
in this context? Did flight have something to do with 
weight or size or with other features such as wings? Did 
it have something to do with the flapping of wings (as 
Jacob Degen hypothesized)? Or did it have something to 
do with wing shape, wing size, or wing weight? Perhaps 
feathers are critical to flight. In short, it is hard to know 
what data might be relevant and useful.

Of course, not all our beliefs are fully justified in terms 
of direct empirical data that we ourselves have verified. 
We cannot—nor would we want to—directly verify all 
the data and observations that underlie our beliefs and 
knowledge. More often than not, for our evidence, we 
rightly rely on the expertise, beliefs, or scientific argu
ments of others, which serve as testimony for the beliefs 
that we hold (Coady 1992, Goldman 1999). The cognitive 
sciences have also begun to emphasize this point. Bayes
ian and other probabilistic models of cognition have 
introduced the idea of the reliability of the source when 
considering what data or evidence one should use to 
update beliefs and knowledge (e.g., Hahn et al. 2018, 
Merdes et al. 2021). This approach recognizes that not all 
data and evidence is equal. Who says what does matter. 
The source of evidence needs to be considered. For 
example, scientific expertise and consensus are critically 
important sources of beliefs and knowledge.

This is readily illustrated by heavier-than-air flight. So 
what might happen if we weight our beliefs about the 
plausibility of human flight by focusing on reliable, sci
entific sources and consensus? In most instances, this is a 
rational strategy. However, updating our belief on this 

basis when it comes to heavier-than-air flight during this 
time period would further reinforce the conclusion that 
human-powered flight was delusional and impossible. 
Again, scientists such as LeConte and Newcomb argued 
that flight was impossible by pointing to seemingly con
clusive data and evidence. And, not only should we 
update our belief based on this evidence, but we should 
also further weight that evidence by the fact that it came 
from highly prominent scientists with seemingly rele
vant knowledge in this domain. LeConte, for example, 
became the eventual president of the leading scientific 
association in the United States (the American Associa
tion for the Advancement of Science). And LeConte was 
scarcely alone. He was part of a much broader scientific 
consensus that insisted on the impossibility of human- 
powered flight. For example, Lord Kelvin emphatically 
argued—when serving as president of the British 
Royal Society—that “heavier-than-air flying machines 
are impossible.” This is ironic, as Kelvin’s scientific 
expertise in thermodynamics and hydrodynamics, the 
behavior of gases under different conditions (and other 
areas of physics), in fact, features practical implications 
that turned out to be extremely relevant for human- 
powered flight. And the aforementioned, prominent 
mathematician-astronomer Simon Newcomb (1901) 
also argued—in his article, “Is the airship coming?”— 
that the impossibility of flight was a scientific fact as 
there was no combination of physical materials that 
could be combined to enable human flight (for historical 
details, see Crouch 2002, Anderson 2004).

The question then is, how does someone still—despite 
seemingly clear evidence and scientific consensus— 
hold onto a belief that appears delusional? In the case of 
human flight, the data, evidence, and scientific consen
sus were firmly against the possibility. No rational 
Bayesian should have believed in heavier-than-air flight. 
Again, the evidence against it was not just empirical (in 
the form of LeConte’s bird and other data) and based on 
science and scientific consensus (in the form of Kelvin 
and Newcomb’s physics-related arguments), but it also 
was observationally salient. Many aviation pioneers not 
only failed and were injured, but some also died. For 
example, in 1896, the German aviation pioneer Otto Lil
ienthal died attempting to fly, a fact with which the 
Wright brothers were well acquainted (as they subse
quently studied Lilienthal’s notebooks and data). And, 
in 1903—just nine weeks before the Wright brothers 
succeeded—the scientist Samuel Langley failed specta
cularly in his attempts at flight with large scientific and 
lay audiences witnessing the failures. Reflecting on 
recent flight attempts (including Langley’s prominent 
failure), the editorial board of The New York Times (1903) 
estimated that it would take the “combined and continu
ous efforts of mathematicians and mechanicians from 
one million to ten million years” to achieve human- 
powered flight.
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Now, we have, of course, opportunistically selected a 
historical example in which a seemingly delusional 
belief—one that went against existing data, evidence, 
and scientific consensus—turned out to be correct. 
Cognitive and social psychologists often engage in the 
“opposite” exercise in which they retrospectively point 
to situations in which humans doggedly persist in hold
ing delusional beliefs despite clear evidence against 
those beliefs because of biased information processing, 
selective perception, or biased sampling of data (Festin
ger et al. 1956, Kunda 1990, Kahneman 2011, Pinker 
2021; though see Anglin 2019). Conspiracy theories pro
vide a frequently discussed example of beliefs that seem 
impervious to evidence (Gagliardi 2024, Rao and Greve 
2024). Economists more generally have highlighted how 
humans can be “resistant to many forms of evidence, 
with individuals displaying non-Bayesian behaviors 
such as not wanting to know, wishful thinking, and real
ity denial” (Bénabou and Tirole 2016, p. 142).19 Of 
course, some beliefs truly are delusional. But others— 
such as flight—may merely appear delusional.

We think that the other side of beliefs—beliefs 
that presently might appear delusional (beliefs that go 
against the evidence) and are seemingly driven by moti
vated reasoning but turn out to be correct—also need to 
be addressed. Our example of flight offers an instance 
of a far more generalizable process in which data–belief 
asymmetries are essential for the emergence of novelty and 
new knowledge. Heterogenous beliefs and data–belief 
asymmetries are the lifeblood of new ideas, new forms 
of experimentation, and new knowledge as we discuss 
next. Furthermore, this turns out to have important 
implications for computation-oriented forms of AI and 
cognition.

Theory-Based Causal Logic 
and Cognition
Building on the aforementioned data–belief asymmetry, 
next we discuss the cognitive and practical process by 
which humans engage in forward-looking theorizing and 
causal reasoning that enables them to, in essence, go 
beyond the data or, more specifically, to go beyond 
existing data to experiment and produce new data and 
novelty. We specifically emphasize how this form of cog
nitive and practical activity differs from data-driven and 
information processing–oriented forms of cognition—the 
hallmarks of AI and computational forms of cognition— 
and allows humans to intervene in the world in a 
forward-looking fashion. Approaches that focus on data- 
driven prediction take and analyze the world as it is with
out recognizing the human capacity to intervene (Pearl 
and Mackenzie 2018) and to realize beliefs that presently 
seem implausible because of the apparent lack of data 
and evidence. We extend the example of heavier-than-air 
flight to offer a practical illustration of this point in an 

effort to provide a unique window into what we think is a 
far more generalized and ubiquitous process.

Our foundational starting point—building on Felin 
and Zenger (2017)—is that cognitive activity is a form of 
theoretical or scientific activity.20 That is, humans gener
ate forward-looking theories that guide their perception, 
search, and action. As noted by Peirce (1957, p. 71), the 
human “mind has a natural adaptation to imagining cor
rect theories of some kinds … If man had not the gift of a 
mind adapted to his requirements, he could not have 
acquired any knowledge.” As highlighted by our exam
ple of language, the meager linguistic inputs of a child 
can scarcely account for the vast outputs, thus pointing 
to a human generative capacity to theorize. The human 
capacity to theorize—to engage in novel problem solv
ing and experimentation—has evolutionary origins and 
provides a highly plausible explanation for evolutionary 
leaps and the emergence of technology (Felin and Kauff
man 2023).

Importantly, theory-based cognition enables humans 
to do things, to experiment. This is also the basis of the 
so-called core knowledge argument in child develop
ment (e.g., Spelke et al. 1992, Carey and Spelke 1996). 
Humans develop knowledge as scientists do through a 
process of hypothesizing, causal reasoning, and experi
mentation. Whereas computational approaches to cog
nition focus on the primacy of data and environmental 
inputs, a theory-based view of cognition focuses on the 
active role of humans in not just learning about their sur
roundings, but also their role in actively generating new 
knowledge (Felin and Zenger 2017). Without this active, 
generative, and forward-looking component of theoriz
ing, it is hard to imagine how knowledge would grow 
whether we are talking about practical or scientific 
knowledge. This is nicely captured in the title of an arti
cle in developmental psychology: “If You Want to Get 
Ahead, Get a Theory” (Karmiloff-Smith and Inhelder 
1974). This also echoes Lewin‘s (1943, p. 118) maxim, 
“There is nothing as practical as a good theory.” The cen
tral point here is that theories are not just for scientists. 
Theories are pragmatically useful for anyone seeking to 
understand and influence their surroundings; theories 
help us do things. Theorizing is a central aspect of 
human cognitive and practical activity. Thus, as argued 
by Dewey (1916, pp. 438–442), “the entities of science are 
not only from the scientist,” and “individuals in every 
branch of human endeavor should be experimentalists.” 
We build on this intuition and extend it into new and 
novel domains along with contrasting it with AI-informed 
models of cognition.

The theory-based view—in the context of decision 
making and strategy—extends the above logic and 
emphasizes the importance of theorizing and theories in 
economic contexts with widespread implications for 
cognition (Felin and Zenger 2017). The central idea 
behind the theory-based view is that economic actors 
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can (and need to) develop unique, firm-specific theories. 
Theories do not attempt to map existing realities, 
but rather to generate unseen future possibilities, and 
importantly, theories suggest causal interventions 
(experiments and actions that need to be taken) that 
enable the realization of these possibilities. Theories can 
also be seen as a mechanism for hacking competitive fac
tor markets (cf. Barney 1986), enabling economic actors 
to see and search the world differently. Awareness for 
new possibilities is cognitively developed top-down 
(Felin and Koenderink 2022). Theories also have central 
implications for how to efficiently organize or govern 
the process of realizing something that is new (Wuebker 
et al. 2023). This approach has been empirically tested 
and validated (e.g., Camuffo et al. 2020, Novelli and 
Spina 2022, Agarwal et al. 2023), including important 
theoretical extensions (e.g., Ehrig and Schmidt 2022, 
Zellweger and Zenger 2023).21 The practical implica
tions of the theory-based view have also led to the devel
opment of managerial tools to assist start-ups, economic 
actors, and organizations in creating economic value 
(Felin et al. 2021a).

Our goal in this section of the paper is not to exhaus
tively review the theory-based view. Rather, our goal 
now is to further build out the cognitive and practical 
aspects of the theory-based view with a specific empha
sis on causal reasoning and how this contrasts with 
backward-oriented, data-focused approaches to AI and 
cognition. We highlight how the human capacity for the
orizing and causal reasoning differs from AI’s emphasis 
on data-driven prediction. A theory-based view of 
cognition allows humans to intervene in the world 
beyond the given data—not just to process, represent, or 
extrapolate from existing data. Theories enable the 
identification or generation of nonobvious data and 
new knowledge through experimentation. This differs 
significantly from the arguments and prescriptions sug
gested by computational, Bayesian, and AI-inspired 
approaches to cognition. It is important to carefully 
establish these differences as AI-based and computa
tional approaches—as extensively discussed at the out
set of this paper—are said to be superior to human 
judgment and cognition (e.g., Kahneman 2018).

Cognition: Data–Belief Asymmetry Revisited
Heterogeneous beliefs provide the initiating impetus for 
theory-based causal reasoning and cognition. From our 
perspective, for beliefs to be a relevant concept for 
understanding cognition and decision making, beliefs 
do not necessarily—in the first instance—need to be 
based on data. We are specifically interested in forward- 
looking beliefs, beliefs that presently lack evidence or 
even go against existing data but which might turn out 
to be true. Forward-looking beliefs, then, are more in 
search of data rather than based on existing data. At the 

forefront of knowledge, data are an outcome of beliefs— 
coupled with causal reasoning and experimentation 
(which we discuss in the next section)—rather than new 
knowledge being a direct outcome of existing data.

The problem is that it is hard to ex ante distinguish 
between beliefs that indeed are delusional versus those 
that simply are ahead of their time. Data–belief asymme
try is critical in situations in which data lags belief (or in 
which data might presently be nonexistent), that is, 
situations in which the corroborating data simply has 
not yet been identified, found, or experimentally gener
ated. In many cases, beliefs do not automatically verify 
themselves. Rather, more often than not, they require 
some form of targeted intervention, action, and experi
mentation. The search for data in support of an uncom
mon, contrarian, or discrepant belief necessarily looks 
like irrational motivated reasoning or confirmation bias 
(Kunda 1990; cf. Hahn and Harris 2014). To briefly illus
trate, Galileo’s belief in heliocentrism went against the 
established scientific data and consensus and even plain 
common sense. Geocentric conceptions of Earth’s place 
in the universe were observationally well established. 
And they were successful: they enabled precise predic
tions about the movement of planets and stars. Even 
everyday observation verified that the Earth does not 
move and that the sun seemingly circles the Earth. Gali
leo’s detractors essentially argued that Galileo was 
engaged in a form of biased, motivated reasoning 
against the Catholic Church by trying to take human
kind and the immovable Earth away from the center of 
God’s creation.

Before discussing how causal reasoning is essential 
for the realization of contrarian or delusional beliefs, it is 
worth emphasizing the role of beliefs as motivators of 
action. Namely, the strength or degree of one’s belief can 
be measured by one’s likelihood to take action as a result 
of that belief (Ramsey 1931; also see Felin et al. 2021a). By 
way of contrast, the degree or strength of belief based on 
probabilistic or Bayesian models of cognition (cf. Pinker 
2021) is directly tied to existing data and the weight of 
the available evidence (cf. Keynes 1921) rather than the 
likelihood of taking action—a significant difference.

Notice the implications of this in a context of our ear
lier example, human-powered flight. Belief played a cen
tral role in motivating action on the part of aviation 
pioneers despite overwhelming data and evidence 
against the belief. In a sense, those pursuing flight did 
not appropriately update their beliefs. Much, if not 
most, of the evidence was against the Wright brothers, 
but somehow, they still believed in the plausibility of 
flight. One of the Wright brothers, Wilbur, wrote to the 
scientist and aviation pioneer Samuel Langley in 1899 
and admitted that “for some years I have been afflicted 
with the belief that flight is possible. My disease has 
increased in severity and I feel that it will soon cost me 
an increased amount of money if not my life” (Wright 
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and Wright 1881–1940, emphasis added). Wilbur clearly 
recognized that his belief about flight appeared delu
sional to others as is evident from his letters. But this 
belief motivated him to engage in causal reasoning and 
experimentation that enabled him and his brother to 
make the seemingly delusional belief a reality (only four 
short years later). Contrast the Wright brothers’ belief 
with the belief of Lord Kelvin, one of the greatest scien
tific minds of the time. When invited to join the newly 
formed Aeronautical Society a decade earlier, Kelvin 
declined and said, “I have not the slightest molecule of 
faith in aerial navigation.” Here Kelvin might have been 
channeling a scientific contemporary of his: the mathe
matician William Clifford (2010, p. 79), who argued that 
“it is wrong always, everywhere, and for anyone to 
believe anything on insufficient evidence.” Kelvin did 
not want to lend support to what he considered an anti
scientific endeavor. Without the slightest belief in the 
possibility of human flight, Kelvin naturally did not 
want to support anything that suggested human- 
powered flight might be possible. But, for the Wright 
brothers, the possibility of powered flight was very 
much a “live hypothesis” (James 1967). Despite the data, 
they believed human flight might be possible and took 
specific steps to realize their belief.

Asymmetries between data and beliefs present pro
blems for the very idea of rationality (cf. Chater et al. 
2018, Felin and Koenderink 2022). After all, to be a ratio
nal human being, our knowledge should be based on 
evidence. Our beliefs and knowledge should be propor
tionate to the evidence at hand. In a strict sense, the very 
concept of beliefs is not even needed as one can instead 
simply talk about knowledge, that is, beliefs justified by 
evidence. This is succinctly captured by Pinker (2021, p. 
244), who argues, “I don’t believe in anything you have 
to believe in.” This seems like a reasonable stance. It is 
also the basis of Bayesian approaches in which new data 
(somehow) emerges and we can update our beliefs and 
knowledge accordingly, providing us an “optimal way 
to update beliefs given new evidence” (Pilgrim et al. 
2024). This is indeed the implicit stance of cognitive 
approaches that focus on computational and probabilis
tic belief updating (e.g., Dasgupta et al. 2020).

But data–belief asymmetries—in which existing data 
presently does not corroborate beliefs or even goes 
against them—can be highly useful, even essential. They 
are the raw materials of technological and scientific pro
gress. They are a central ingredient of decision making 
under uncertainty. Data–belief asymmetries direct our 
awareness toward new data and possible experiments 
to generate the evidence to support a belief. Of course, 
the idea of seeking data to verify a particular belief is the 
very definition of delusion and a host of associated 
biases, including confirmation bias, motivated reason
ing, cherry-picking, denialism, self-deception, and belief 
perseverance. To an outsider, this looks like the perfect 

example of “the bad habit of seeking evidence that rati
fies a belief and being incurious about evidence that 
might falsify it” (Pinker 2021, p. 13; also see Hahn and 
Harris 2014). Belief in human-powered flight readily 
illustrates this as there was plenty of evidence to falsify 
the Wright brothers’ belief in the plausibility of heavier- 
than-air flight. Holding an asymmetric belief seems 
to amount to “wishful thinking” or “protecting one’s 
beliefs when confronted with new evidence” (Kru
glanski et al. 2020, p. 413; though see Anglin 2019). The 
Wright brothers were continuously confronted with evi
dence that disconfirmed their belief, including Samuel 
Langley’s public failures with flight or the knowledge of 
Lilienthal’s failed attempts (and his death because of a 
failed flight attempt). But, in these instances, ignoring 
the salient data and evidence—not updating beliefs 
based on seemingly strong evidence and even scientific 
consensus—turned out to be the correct course of action.

There are times when being (seemingly) irrational— 
ignoring evidence, disagreeing about its interpretation, 
or selectively looking for the right data—turns out to be 
the correct course of action. Human-powered flight, of 
course, is a particularly vivid illustration of this, though 
even more mundane forms of human behavior are fun
damentally characterized by a similar process (Felin and 
Koenderink 2022). Most important for present purposes, 
our argument is that beliefs have a causal role of their 
own and can be measured by our propensity to act on 
them (Ramsey 1931, Felin et al. 2021a). Of course, having 
beliefs or having a willingness to act on them does not 
assure us that they are true. But they are an important 
motivation for action (Bratman 1987, Ajzen 1991).22

And, again, notice that our emphasis on beliefs should 
not be seen as an attempt to dismiss the importance of 
data. Rather, as we highlight next, beliefs can motivate 
theory-based causal reasoning that directs human 
awareness toward actions and experiments that enable 
the generation of new data, evidence, and realization of 
new knowledge.

From Beliefs to Causal Reasoning and 
Experimentation
The realization of beliefs is not automatic. A central 
aspect of beliefs is their propensity to lead to causal rea
soning and some form of directed experimentation. 
Beliefs enable actors to articulate a path for how to inter
vene in their surroundings and generate the evidence 
needed (Felin et al. 2021b). Our view of cognition and 
action here is more generally informed by the idea that 
theorizing can guide humans to develop an underlying 
causal logic that enables us to intervene in the world 
(Pearl and Mackenzie 2018; also see Ehrig et al. 2024). 
This orientation toward intervention means that we do 
not simply take the world as it is; rather, we counterfac
tually think about possibilities and future states with an 
eye toward taking specific action, experimenting, and 
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generating the right evidence. This shifts the locus from 
backward-oriented information processing and prediction 
(in which the data are given) to doing and experimentation 
(in which the right data and evidence is identified or gener
ated). This involves actively questioning and manipulating 
causal structures, allowing for a deeper exploration of 
what-if scenarios. Counterfactual thinking empowers 
humans to probe hypothetical alternatives and dissect 
causal mechanisms offering insights into necessary and 
sufficient conditions for an outcome (Felin et al. 2024). This 
approach is significantly different from input–output and 
information processing–oriented models of AI and com
putational cognition and various data-driven or Bayesian 
approaches to decision making. AI-based models of cog
nition largely focus on patterns based on past associations 
and correlations; prediction is based on past data. But 
these approaches lack an ability to understand underlying 
causal structures, hypothetical possibilities, and possible 
interventions (cf. Felin et al. 2021a, Ehrig et al. 2024). This 
is the role of theory-based causal logic.

A focus on plausible interventions and experimenta
tion can be illustrated by extending our example of 
human-powered flight. This example also aptly illus
trates the difference between how data-oriented and 
evidence-based scientists thought about the possibility of 
human-powered flight versus how more intervention- 
oriented and causal logic–based practitioners such as the 
Wright brothers thought about it. To understand flight, 
the Wright brothers delved into the minutiae of why pre
vious attempts at flight had not succeeded, and more 
importantly, they developed a causal theory of flight. 
Whereas failed flight attempts and the death of Lilienthal 
(and others) were used by many as data to claim that 
flight was impossible, the Wright brothers looked at the 
specific reasons why these attempts had failed.23 And, 
whereas scientists had used bird data to argue that 
human flight was impossible (because of weight) (e.g., 
LeConte 1888, Newcomb 1901), the Wright brothers paid 
attention to a different aspect of bird flight. Ironically, 
bird-related data—though different aspects of it— 
provided seeming evidence for those advocating both 
for and against flight. LeConte focused on the weight of 
birds, whereas the Wright brothers engaged in observa
tional studies of the mechanics of bird flight and anatomy 
(why birds were able to fly), for example, carefully study
ing the positioning of bird wings when banking and 
turning.

The key difference was that the Wright brothers with 
their belief in the plausibility of flight were building a 
causal theory of flying rather than looking for data that 
confirmed or disconfirmed whether flight was possible. 
The Wright brothers ignored the data and the scientific 
arguments of the naysayers. From the Smithsonian, the 
Wright brothers requested and received details about 
numerous historical flight attempts, including Otto 
Lilienthal’s records. The Wright brothers notes and 

letters reveal that they carefully studied the flight 
attempts and aircraft of earlier pioneers such as George 
Cayley, Alphonse Penaud, and Octave Chanute (Wright 
and Wright 1841–1940, Anderson 2004, McCullough 
2015). They studied various aspects of past flight 
attempts: the types of airplanes used, details about wing 
shape and size, weather conditions, and underlying 
aerodynamic assumptions.

Again, the Wright brothers sought to develop their own, 
causal theory of flying. Their theory was not just motivated 
by their contrarian belief that flight was possible (a belief 
for which there did not seem to be any evidence). Their 
confidence in the plausibility of flight grew as they care
fully studied the underlying mechanics of flight as they 
investigated the causal logic of flight. Most importantly, 
their causal reasoning led them to articulate the specific 
problems they needed to solve for human-powered flight 
to be possible. The Wright brothers reasoned that it was 
essential to solve three problems related to flight, namely, 
(a) lift, (b) propulsion, and (c) steering. To illustrate the 
power of developing a theory-based causal logic and iden
tifying specific problems to solve, coupled with directed 
experimentation, we briefly discuss how they addressed 
one of the problems: the problem of lift.

In terms of lift, the Wright brothers understood that, 
to achieve flight, they needed a wing design that could 
provide sufficient lift to overcome the weight of their 
aircraft. Indeed, prominent scientists argued that the 
prohibiting factor of human flight was weight (again, 
pointing to insect flight and the weight of those birds 
that fly and those that do not). The Wright brothers felt 
that the concern with weight was not insurmountable. 
Informed by their investigations into bird flight (and the 
flight attempts of others), they approached this problem 
through a series of experiments that included the 
construction and testing of various airfoils. Their experi
mentation was highly targeted and data-oriented, test
ing various wing shapes, sizes, and angles. They also 
quickly realized that not everything needed to be tested 
at scale and that their experiments with lift could more 
safely and cost-effectively be done in laboratory condi
tions. Thus they constructed their own wind tunnels. 
Targeted tests within these tunnels allowed the Wright 
brothers to learn the central principles of lift. They mea
sured everything and kept meticulous track of their 
data—data that they generated through ongoing experi
mental manipulation and variation. This hands-on 
experimentation allowed them to collect data on how 
different shapes and angles of attack affected lift. By sys
tematically varying these parameters and observing the 
outcomes, they were effectively employing causal rea
soning to identify the conditions under which lift could 
be maximized. Their discovery and refinement of wing 
warping for roll control was a direct outcome of under
standing the causal relationship between wing shape, 
air pressure, and lift.
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The same processes of causal reasoning and directed 
experimentation were also central for addressing the 
other two problems: propulsion and steering or control. 
And, more generally, the Wright brothers were careful 
scientists in every aspect of their attempt to realize their 
belief in human-powered flight. For example, to deter
mine a suitable place for their flight attempts, they con
tacted the U.S. Weather Bureau. They had established 
what the optimal conditions might be for testing flight. 
They needed four things: consistent wind (direction and 
strength), wide open spaces, soft or sandy landing sur
faces, and privacy. They received several suggestions 
from the U.S. Weather Bureau and chose Kitty Hawk, 
North Carolina, for the site of their real-world trial 
(Wright and Wright 1881–1940).

The Wright brothers’ approach to flight offers a useful 
case study and microcosm of how theory-based causal 
logic enables belief realization even when beliefs seem
ingly are not supported by existing data, evidence, or 
science. Based on their theorizing, study, and causal 
reasoning, the Wright brothers engaged in directed 
experimentation to solve the central problems of lift, 
propulsion, and steering. Their approach exemplifies 
the application of causal logic to understand and inter
vene in the world in the seeming absence of data (or 
even when data are contrary to one’s belief). Their 
success with flight demonstrates how a systematic, 
intervention-oriented approach can unravel the causal 
mechanisms underlying complex phenomena and over
come the shortcomings of existing data.

As is implied by our arguments, we think scientific, 
economic, and technological domains are replete with 
opportunities for those with asymmetric beliefs to utilize 
theory-based causal reasoning and engage in directed 
experimentation and problem solving (Felin and Zenger 
2017). As we argue, existing theories of cognition are 
overly focused on data–belief symmetry rather than 
data–belief asymmetry and how the latter enables causal 
reasoning that can enable the emergence of heterogeneity 
and the creation of novelty and value. Whereas there is 
much excitement about using AI to automate the genera
tion of new knowledge and novelty generation (e.g., Csas
zar et al. 2024, Lu et al. 2024, Manning et al. 2024) and 
even calls to replace biased human decision making by AI 
(e.g., Kahneman 2018), we argue that human causal rea
soning cannot, at least presently, be mimicked by AI sys
tems or computational approaches to cognition. Next, we 
further explore the implications of this argument for deci
sion making under uncertainty and strategy.

Discussion: The Limits of Prediction for 
Decision Making Under Uncertainty
As we extensively discuss in this article, AI and the cog
nitive sciences use many of the same metaphors, tools, 
methods, and ways of reasoning about intelligence, 

rationality, and the mind. The prevailing assumption in 
much of the cognitive sciences is that the human mind is 
a computational input–output system (Christian and 
Griffiths 2016). Computational and algorithmic systems 
emphasize the power of prediction based on past data. 
The centrality of prediction is echoed by one the pio
neers of AI, LeCun (2017), who argues that “prediction 
is the essence of intelligence.”

Clearly, the predictive capabilities of AI are powerful. 
But is prediction central for decision making under 
uncertainty as well (that is, in unpredictable situations)? 
Many argue that this is the case (e.g., Davenport and 
Kirby 2016, Kahneman 2018). For example, in their book, 
Prediction Machines: The Simple Economics of Artificial 
Intelligence, Agrawal et al. (2022, pp. 22–32) emphasize 
that, stripped down to its essence, “AI is a prediction tech
nology.” And a central claim of their book is that 
“prediction is at the heart of making decisions under 
uncertainty” (Agrawal et al. 2022, p. 7, emphasis added). 
One way to summarize our argument in this paper is 
that we disagree with the importance placed on 
prediction—particularly in the form it is manifest in AI 
(that is, prediction based on past data)—especially in 
situations of uncertainty. Because the emphasis on pre
diction is commonplace, it is worth carefully pinpoint
ing why we disagree with the importance placed on 
prediction.

Agrawal et al.’s (2022) argument offers a useful way 
for us to crystallize our more general concerns with the 
emphasis that is placed on prediction. Their argument 
might be summarized by pointing to a relatively com
mon causal chain (of sorts), one that proceeds from data 
to information to prediction and to a decision or, in 
short, data → information → prediction → decision.24

They specifically argue that “data provides the informa
tion that enables a prediction,” and prediction, in turn, is 
“a key input into our decision making.” This causal 
chain—from data to information to prediction and 
decision—certainly has intuitive appeal and mirrors 
what AI systems are good at: taking in vast amounts of 
inputs and data, processing this information, and then 
making predictions that can be used to make decisions. 
In short, as emphasized by Agrawal et al. (2022) and 
many others, data-driven prediction is at the heart of not 
just language models but AI more generally and also 
placed center stage in cognition.

But as we highlight throughout this paper, the prob
lem is that data—data that is presently available or 
given—is not likely to be the best source of information 
and prediction when making forward-looking deci
sions. Data are snapshots of or mirrors to the past. Even 
vast amounts of data are unlikely to somehow enable 
one to anticipate the future (Felin et al. 2014). What is 
needed is some mechanism for projecting into the future 
and identifying the relevant data and evidence or, more 
likely, experimentally generating new data. This is the 
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role of a theory and some form of causal reasoning, 
which are critical elements missing from data-first and 
prediction-oriented approaches to AI and cognition. We 
grant that, for various routine and repetitive decisions, 
prediction undoubtedly is a useful tool. Data-based pre
diction can be highly powerful in predictable situations: 
situations that match or extrapolate from the past. This 
matches what AI and prediction-based cognition is 
really good at, namely, the minimization of surprise and 
reduction of error. More broadly, this also matches the 
strong emphasis that many scholars of judgment and 
decision making put on consistency and the eagerness to 
avoid noise (see Kahneman et al. 2021).

But many important decisions are not meaningfully 
about uncertainty reduction through error minimization 
using existing data. The purpose of large swaths of deci
sion making is more about (in a sense) maximizing sur
prise and error or what, to others, might look like error. 
In a strategy context, the most impactful opportunities 
and sources of value are not founded on immediately 
available data. Rather, important decisions such as this 
require the development of a theory, founded on some 
kind of heterogeneous belief, that maps a causal path or 
logic for how to test the theory, experiment, and gather 
new evidence to realize the belief. In an important sense, 
strategic decision making has more to do with unpre
dictability and the maximization of surprise rather than 
prediction and the minimization of surprise. Some deci
sions are highly impactful, low-frequency, rare, and 
fraught with uncertainty (Camuffo et al. 2022) and, 
therefore, simply not amenable to algorithmic proces
sing using existing data. This is why theory-based causal 
reasoning is not about appropriately representing the 
structure of the environment or about bounded rational
ity or listening to customers; rather, it is about develop
ing a forward-looking theory and causal logic about 
how to experiment and create value (Felin et al. 2024).

Notice that our focus on unpredictability and surprise 
does not mean that we are somehow outside the realms 
of science or data. Quite the contrary. The process of 
making forward-looking decisions is about developing 
an underlying theory-based causal logic of how one 
might intervene in the world: essentially, outlining a 
causal path of how one might get from point A (the cur
rent state of the world) to point B (a hypothesized future 
state of the world). Theories create salience for the right 
interventions, experiments, and new data that enables 
the realization of beliefs that initially appear implausi
ble. Theories play a central role in generating salience for 
what can be observed; the very idea of data (or observa
tion) is theory dependent. As put by Einstein, “Whether 
you can observe a thing or not depends on the theory 
which you use. It is the theory which decides what can 
be observed” (Polanyi 1974, p. 604). Salience to the right 
(or new) data or forms of experimentation is given by a 
theory, not by past data. In this sense, theories can be 

said to have a predictive function, though here predic
tion is not a data-driven or error-minimizing process as 
it has been defined and operationalized within the con
text of AI (Agrawal et al. 2022) and cognitive science (cf. 
Clark 2018). Now, if the task at hand is routine and 
mundane—for example, “predict the next word in this 
sentence” or “tell me what you expect to see next”— 
then prediction with existing data can be useful. But the 
theory-based view is more focused on the forward- 
looking aspects of cognition and how human agents 
realize beliefs by developing a multistep causal path that 
enables the realization of beliefs through experimenta
tion and problem solving. This is precisely what our 
example of the Wright brothers’ theory of flying—and 
causal reasoning and experimentation—illustrates. It 
serves as microcosm of a far more general process of 
how humans intervene in their surroundings and realize 
novel beliefs. The economic domain is full of examples 
of how economic actors engage in this process (Felin and 
Zenger 2017).

Our emphasis on surprise and unpredictability— 
rather than predictability and the minimization of 
error—is particularly important in competitive contexts. 
If everyone has access to the same prediction machines 
and AI-related information processing tools, then the 
outcomes are likely to be homogeneous. Strategy, if it is 
to actually create new value, needs to be unique and 
firm-specific. And this firm-specificity is tied to unique 
beliefs and the development of a theory-based logic for 
creating value that is unforeseen (not predictable) by 
others. Theories enable economic actors to hack compet
itive factor markets (Barney 1986) to develop unique 
expectations about the value of assets and activities. The
ories also enable firms to search in a more targeted fash
ion (Felin et al. 2023) rather than engaging in costly and 
exhaustive forms of global search. Prediction-based 
engines, while there are attempts to fine-tune them, are 
inherently based on past frequencies, correlations, and 
averages rather than extremes. And, in many instances, 
it is the extremes that turn out to be far more interesting 
as these provide the seeds of the (eventual) beliefs and 
data that we later take for granted.

In all, we disagree with the emphasis that is placed on 
prediction, algorithmic processing, and computation in 
decision making and cognition (e.g., Christian and Grif
fiths 2016, Agrawal et al. 2022). Human decision making 
should not be relegated to AI (cf. Kahneman 2018). AI 
and AI-inspired models of cognition are based on 
backward-looking data and prediction rather than any 
form of forward-looking, theory-based causal logic. 
Emphasizing or relying on data and prediction is a debil
itating limitation for not just decision making and cogni
tion, but also for understanding knowledge generation 
and even scientific progress. Therefore, we emphasize 
the importance of heterogenous beliefs in human cogni
tion and the development of theory-based causal logic 
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that enables experimentation and the generation of new 
data and novelty.

Future Research Opportunities
The above arguments suggest a number of research 
opportunities, particularly when it comes to under
standing AI, the emergence of novelty, and decision 
making under uncertainty. First, there is an opportunity 
to study when and how AI-related tools might be uti
lized by humans (such as economic actors) to create new 
value or to aid in decision making. If AI as a cognitive 
tool is to be a source of competitive advantage, it has to 
be utilized in unique or firm-specific ways. AI that uses 
universally available training data necessarily yields 
generic and nonspecific outputs. There is the risk that 
off-the-shelf AI solutions are susceptible to the 
“productivity paradox” of information technology 
(Brynjolfsson and Hitt 1998), in which investments in AI 
actually do not yield any gains to those buying these 
tools (rather only to those selling these technologies). 
Thus there is an opportunity to study how a specific 
decision maker’s—such as a firm’s—own theory of 
value can drive the process of AI development and 
adoption. For AI to actually be a useful tool for strategy 
and decision making, AI needs to be customized, 
purpose-trained, and fine-tuned—it needs to be made 
specific—to the theories, unique causal reasoning, data 
sets, and proprietary documents of decision makers 
such as firms. For example, advances in retrieval- 
augmented generation seem to offer a promising avenue 
to enhance specificity when using AI in strategic deci
sion making. Any adoption of AI should be deliberate 
about which corpora and training data are utilized (and 
which not) when seeking unique AI-driven outputs. 
After all, the outputs of an AI—tailored to use specific 
data—are also the product of human agents who make 
decisions about which data are relevant and (which 
are not) for the decision at hand. It is here that we see 
an opportunity to understand how humans might 
uniquely interact with AI to generate these tools and 
associated human–AI interfaces. Early work has begun 
to look at how firms utilize AI to increase innovation or 
how various human–AI hybrid solutions enable better 
decision making (e.g., Gregory et al. 2021, Clough and 
Wu 2022, Choudhary et al. 2023, Girotra et al. 2023, 
Kemp 2023, Babina et al. 2024, Bell et al. 2024, Jia et al. 
2024, Kim et al. 2024, Raisch and Fomina 2024, Tranchero 
et al. 2024). But there are promising opportunities to 
study how a particular economic actor’s or firm’s own 
theory and causal logic—as well as their unique or firm- 
specific sources of data and information—can shape the 
development or adoption of AI-related tools for execut
ing strategy and making decisions.

Second, there are ongoing opportunities to research 
and develop taxonomies of the respective capabilities of 

humans versus AI when it comes to different types of 
tasks, problems, and decisions. There is much excite
ment, hype, and fearmongering about the prospects of 
AI replacing humans tout court (cf. Grace et al. 2024). 
However, in reality, there will likely be a division of 
labor between humans and AI with each focusing on the 
types of tasks, problems, and decisions for which it is 
best suited. There is an opportunity to study how eco
nomic actors and organizations contingently match 
humans (and their cognitive capacities, jobs, roles) ver
sus algorithms (or AI-related tools) with the right tasks 
and decisions. At present, clearly AI is remarkably well 
suited for tasks and decisions that are repetitive, compu
tationally intensive, and that directly extrapolate from 
past data. A significant number of decisions made by 
humans are relatively routine and amenable to algorith
mic processing. AI will, therefore, undoubtedly play a 
key role in many areas of management, especially those 
in which processes repeat, such as operations 
(Holmström, et al. 2019, Amaya and Holweg 2024; for 
research on finance, see Eisfeldt and Schubert 2024). 
However, some decisions are more low-frequency and 
rare (Camuffo et al. 2022) and, therefore, not amenable 
to AI. Here we anticipate that humans will continue to 
play a central role given their ability to engage in 
forward-looking theorizing and the development of 
causal logic beyond extant data. That said, naturally 
there is a sliding scale (and interfaces) between routine 
and nonroutine decision making. Even in the context of 
rare and highly impactful decision making, AI might 
play a role, perhaps in serving as an additional voice or 
sparring partner when generating or considering vari
ous strategies. As we discuss in this paper, AI and 
humans have their respective strengths and limitations. 
Existing work tends to compare AI and humans on the 
same benchmarks rather than recognizing the respective 
strengths of each. Studying the comparative capabilities 
of AI and humans—their respective capabilities, limita
tions, and ongoing evolution—represents a significant 
opportunity for future work.

Third, our arguments point to perhaps more founda
tional questions about the very nature of humans, parti
cularly related to the purportedly computational nature 
of human cognition. Whereas questions about the nature 
of cognition might sound overly abstract and philosoph
ical, they are critically important as they have down
stream consequences for the assumptions we make and 
the methods we employ. Here we echo Simon (1985b, p. 
303, emphasis added) who argued that “nothing is more 
important in setting our research agenda and informing 
our research methods than our view of the nature of the 
human beings whose behavior we are studying.” So what 
is the predominant view of human cognition within AI 
and the cognitive sciences (and, by extension, in eco
nomics and strategy)? The predominant view of humans 
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is that they are input–output devices engaged in infor
mation processing akin to computers. In this paper we 
point out problems with the decades-old computer met
aphor of the human mind, brain, and cognition. The 
computer has served as a central, organizing metaphor 
of human cognition for well over seven decades from 
the work of Alan Turing and Herbert Simon to modern 
instantiations of artificial neural networks, predictive 
processing, and the Bayesian brain (e.g., Knill and Pou
get 2004, Cosmides and Tooby 2013, Kotseruba and 
Tsotsos 2020, Russell and Norvig 2022, Sun 2023, Giger
enzer and Goldstein 2024). A generalized computational 
approach to cognition, however, does not take into con
sideration the comparative nature of the organism under 
study because humans, organisms, and machines are all 
seen as the same—as invariant (see Simon 1990; cf. 
Simon 1980, Gershman et al. 2015). But there are signifi
cant differences in cognition, and these differences 
deserve careful attention. For example, computers do 
not meaningfully make decisions about which inputs 
might be relevant and which might not, nor can they 
meaningfully identify a new input, whereas humans 
have control over which inputs they might select or gen
erate in the first place (Yin 2020, Brembs 2021, Felin and 
Koenderink 2022). Human cognition, as we discuss, is a 
form of forward-looking theorizing and causal reason
ing. Notice that we are not trying to argue for some kind 
of human exceptionalism here, as these capacities are 
manifest—in different ways—across biological organ
isms more broadly (Riedl 1984; cf. Popper 1991).25 There 
are significant research opportunities to study the 
endogenous and comparative factors that enable biolog
ical organisms and economic agents to theorize, reason, 
and experiment and to compare various forms of biolog
ical intelligence with artificial and nonbiological forms 
(cf. Levin 2024). Treating all cognition and intelligence 
as generalized computation unnecessarily narrows the 
scope of theoretical and empirical work and fundamen
tally misses the rich and heterogeneous ways that intelli
gence manifests itself across systems. Furthermore, the 
interfaces between biological and nonbiological forms of 
intelligence—as is manifest in the human use of technol
ogy and tools in evolution (Felin and Kauffman 2023)— 
provide intriguing opportunities for future work.

Conclusion
In this article we focus on the differences in cognition 
between AI and humans. Whereas AI-inspired models 
of cognition continue to emphasize the similarities 
between machines and humans, we argue that AI’s 
emphasis on prediction (using past data) does not cap
ture human cognition; that is, it cannot explain the emer
gence of novelty or new knowledge, nor can it assist in 
decision making under uncertainty. Overall, we grant 
that there are some parallels between AI and human 

cognition. But we specifically emphasize the forward- 
looking nature of human cognition and how theory- 
based causal reasoning allows humans to intervene in 
the world, to engage in directed experimentation, and to 
develop new knowledge. Heterogeneous beliefs and 
theories—data–belief asymmetries—enable the identifi
cation or generation of new data (for example, through 
experimentation) rather than merely being reliant on 
prediction based on the past data. AI-based computa
tional models are necessarily built on data–belief sym
metries. AI, therefore, cannot causally map and project 
into or anticipate the future as illustrated by LLMs. That 
said, our arguments by no means negate or question 
many of the exciting developments within the domain 
of AI. We anticipate that AI will help humans make bet
ter decisions across many domains, especially in settings 
that are characterized by routine and repetition. How
ever, decisions under uncertainty—given the emphasis 
on unpredictability, surprise, and the new—provide a 
realm that is not readily amenable to data- or frequency- 
based prediction and associated computation. Thus we 
fundamentally question the notion that AI will (or 
should) replace human decision making (e.g., Kahne
man 2018). We argue that humans—compared with 
computers and AI—have unique cognitive capacities 
that center on forward-looking beliefs and theorizing: 
the ability to engage in novel causal reasoning and 
experimentation.
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Appendix. AI and Human Cognition: Some 
Further Background

The earliest attempts to develop machines that simulate 
human thought processes and reasoning focused on gen
eral problem solving. Newell and Simon’s (1963) general 
problem solver (GPS) represented an ambitious effort to 
(try to) solve any problem that could be presented in logi
cal form. GPS used means–ends analysis, a technique that 
compared a current state to the desired state (or goal), 
identified the differences, and then applied operators 
(actions) to reduce these differences. The early excitement 
associated with GPS and other AI models—and their abil
ity to mimic human intelligence and thought—was perva
sive. As put by Herbert Simon in 1958, “There are now in 
the world machines that think, that learn and create. 
Moreover, their ability to do these things is going to 
increase rapidly until—in a visible future—the range of 
problems they can handle will be coextensive with the 
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range to which the human mind has been applied” 
(Simon and Newell 1958, p. 8).

Early models such as GPS provided the foundations for 
general cognitive architectures such as SOAR and ACT-R 
(Laird et al. 1987, Anderson 1990). The enthusiasm for 
these general models of cognition and AI continues to this 
day. Kotseruba and Tsotsos (2020) offer an extensive sur
vey of more than 200 different cognitive architectures 
developed over the past decades. The ultimate goal of all 
this research into cognition, they argue, “is to model the 
human mind, eventually enabling us to build human-level 
artificial intelligence” (Kotseruba and Tsotsos 2020, p. 21). 
However, while various cognitive architectures related to 
AI hope to be general—and to mimic or even exceed 
human capability—their application domains have turned 
out to be extremely narrow and specific in terms of the 
problems they actually solve. But, despite limited success 
in generalizing early models of AI (specifically, from the 
late 1950s to the 1990s), excitement about the possibility of 
computationally modeling human cognition did not wane. 
Simon’s frequent collaborator, Alan Newell (1990, p. 40), 
argued that “psychology has arrived at the possibility of 
unified theories of cognition,” specifically in which “AI 
provides the theoretical infrastructure for the study of 
human cognition.” This unified approach builds on the 
premise that humans share certain “important psychologi
cal invariants” with computers and artificial systems 
(Simon 1990, p. 3). This logic is also captured by such ideas 
as “computational rationality” (Gershman et al. 2015).

To this day, there are ongoing calls for and efforts to 
develop a so-called common model of cognition—or, as 
put by others, a standard model of the mind based on AI 
(Laird et al. 2017; cf. Kralik et al. 2018). The call for gen
eral models is born out of a frustration with the aforemen
tioned proliferation of cognitive models that claim to be 
general, despite the fact that these models are heteroge
neous and any given model is highly focused on solving 
very specific tasks and problems. The effort to create a 
meta-model of cognitive AI—a single model that propo
nents of various cognitive architectures could agree on— 
has so far led to the identification of relatively generic ele
ments. These models include basic elements such as per
ception (focused on incoming stimuli or observations of 
the state of the world) and different types of memory 
(and accompanied learning mechanisms), which, in turn, 
are linked to various motor systems and behaviors (Laird 
et al. 2017).

Most of the above attempts to model the human mind 
and mimic human reasoning focused on symbolic sys
tems, so-called good old-fashioned AI. These approaches 
are an attempt to model thinking and intelligence through 
the manipulation of symbols, which represent objects, 
concepts, or states of the world, specifically through logi
cal rules and the development of heuristics. The symbolic 
approach models the world using symbols and then uses 
logical operations to manipulate these symbols to solve 
problems. This represents a rule-based and top-down 
approach to intelligence. It is top-down in the sense that it 
starts with a high-level focus on understanding a particu
lar problem domain and then breaking it down into 

smaller pieces (rules and heuristics) for solving a specific 
task. Perhaps the most significant applications in AI 
between the 1950s and late 1980s were based on these 
rule-based approaches. One of the more prominent appli
cations of an AI-related problem solver was the backward 
chaining expert system MYCIN, which was applied to the 
diagnosis of bacterial infections and the recommendation 
of appropriate antibiotics for treatment (Buchanan and 
Shortliffe 1984). The goal of a system such as this was to 
mimic the judgments of an expert decision maker. The 
model was a type of inference engine that used various 
preprogrammed rules and heuristics to enable diagnosis. 
In all, AI that is based on symbolic systems represents a 
top-down approach to computation and information pro
cessing that seeks to develop a rule- or heuristic-based 
approach to replicate how a human expert might come to 
a judgment or a decision.

Another approach to AI and modeling the human 
mind—called subsymbolic—also builds on the idea of 
information processing and computation, but it empha
sizes bottom-up learning. These models also see the mind 
(or brain) as an input–output device. But the emphasis is 
on learning things from scratch, that is, learning directly 
from data. Vast inputs and raw data are fed to these sys
tems to recognize correlations and statistical associations 
or, in short, patterns. The weakness of the aforementioned 
symbolic systems is that these approaches are only useful 
for relatively static contexts that do not meaningfully 
allow for any form of dynamic, bottom-up learning from 
data or environments.

The foundations of subsymbolic AI were laid by scholars 
seeking to understand the human brain, particularly per
ception. Rosenblatt (1958, 1962; building on Hebb 1949) 
proposed one of the earliest forms of a neural network in 
his model of a “perceptron,” which is the functional equiv
alent of an artificial neuron. Rosenblatt’s work on the per
ceptron aimed to replicate the human neuron, which, when 
coupled together, would resemble human neural networks. 
Because modern artificial neural networks—including con
volutional, recurrent autoencoders and generative adversar
ial networks—build on this broad foundation (e.g., LeCun 
et al. 2015, Aggarwal 2018), it is worth briefly highlighting 
the general architecture of this approach. The architecture 
of the multilayer perceptron includes layers that resemble 
the sensory units (input layer), association units (hidden 
layer), and response units (output layer) of the brain. This 
structure is very much the foundation of modern neural 
networks (Rumelhart et al. 1986, Hinton 1992, Bengio et al. 
2021) and the basis for the radical advances made in areas 
such as AI image recognition and computer vision (Kriz
hevsky et al. 2012). While these models emerged seemingly 
out of nowhere, it is important to understand that the 
foundations were laid decades ago (Buckner 2023).

The process of learning in a neural network—as speci
fied by Rosenblatt—begins with stimuli hitting the sen
sory units, generating a binary response that is processed 
by the association cells based on a predetermined thresh
old. The association cells then send signals to the response 
area, which determines the perceptron’s output based on 
the aggregated inputs from the association cells. The 
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perceptron’s learning mechanism is based on feedback 
signals between the response units and the association 
units, allowing the network to learn and self-organize 
through repeated exposure to stimuli. So-called Hebbian 
learning (Hebb 1949), which posits the relatively cliché 
but important idea that “neurons that fire together, wire 
together,” was the precursor to these types of feedback- 
based learning processes and many modern concepts of 
neural network theory.

In the intervening decades, research on artificial neural 
networks has progressed radically from simple classifiers 
to highly complex, multilayer, nonlinear models capable 
of sophisticated feature learning and pattern recognition 
through weighting and updates using large data sets (e.g., 
Shazeer et al. 2017, Aggarwal 2018). Various forms and 
combinations of machine learning types—for example, 
supervised, unsupervised, and reinforcement learning— 
have enabled radical breakthroughs in image recognition 
and computer vision, recommender systems, game play, 
text generation, and so forth. And commensurate interest 
in the interaction between human neural networks and 
AI—various forms of learning—has continued within the 
cognitive sciences. This includes work on learning the struc
ture of the environment (Friston et al. 2023; also see Hasson 
et al. 2020) and meta learning (Lake and Baroni 2023) or 
so-called “meta-learned models of cognition” (Binz et al. 
2023) as well as inductive reasoning by humans and AI 
(Bhatia 2023) and inferential learning (Dasgupta et al. 2020). 
Many of these models of learning build on neural networks 
in various forms as well as related approaches.

In all, in this appendix we have sought to further high
light the deep connections between AI and computational 
models of human cognition. AI and other cognitive sys
tems are treated in similar fashion as information proces
sing machines or input–output devices (Simon 1990). 
While there has been widespread emphasis on the similar
ities between machines and humans, in this paper we 
explicitly focus on the differences and emphasize the 
importance of theory-based causal reasoning in human 
cognition.

Endnotes
1 We need to briefly comment on the title of this paper: theory is all 
you need. Our title echoes the title of the “attention is all you need” 
article that introduced the transformer architecture, which (among 
other technologies) gave rise to recent progress in AI (Vaswani et al. 
2017). But, just as attention is not all an AI system or large language 
model needs, so theory, of course, is not all that humans need. In 
this article we simply emphasize that theory is a foundational— 
often unrecognized—aspect of human cognition: one that is not eas
ily replicable by machines and AI. We emphasize the role of theory 
in human cognition, particularly the ways in which humans coun
terfactually think about, causally reason, experiment, and practi
cally intervene in the world.
2 Recent comparisons between LLMs and humans reveal intriguing 
insights into formal versus functional linguistic competence. In 
humans, these two forms of competence rely on different neural 
mechanisms (Mahowald et al. 2024).
3 In terms of the training of an LLM, the tokenized words are 
submitted for algorithmic processing based on a predetermined 
sequence or input length. Sequence length is important because it 

allows the LLM to understand context. The (tokenized) text is not 
fed into the system as one long string, but rather in chunks of pre
determined length. This predetermined length is variously called 
the context window, input or sequence length, or token limit. 
Recent LLM models (as of early 2024) typically use input lengths of 
2,048 tokens. (Newer models are exploring longer sequence 
lengths.) Therefore, a 13 trillion token training data set is parsed 
into 2,048-length sequences, enabling the algorithm to learn lan
guage. Learning language is a statistical exercise in which the LLM 
learns from the word patterns, context, and dependencies found in 
the training data. It then uses this learning to stochastically generate 
outputs through next-word prediction.
4 For an infant to be exposed to the same 13 trillion tokens repre
sented by the training of current LLMs, it would take roughly 1.8 
million years.
5 Of course, an infant is not just trained through the language to 
which it might be exposed by auditory means, but also through 
other modalities and systems (including visual, olfactory, gustatory, 
and tactile ones). LLMs are largely monomodal though various 
multimodal models of AI are, of course, in development. But, set
ting aside questions of multimodality or even the amount of text or 
information with which a system might be trained, there are also 
deeper questions. For example, how humans are able to learn from 
the things they encounter in the first place and what they learn (or 
what humans notice in the first place) is a key puzzle. Undoubtedly, 
the biological nature and evolutionary history of humans is central 
to understanding these types of questions, as is the associated abil
ity of humans—as we emphasize in this paper—to engage with 
their surroundings in novel and forward-looking ways.
6 This logic is aptly captured by Chomsky (1975, p. 179, emphasis 
added): “One can describe the child’s acquisition of knowledge of 
language as a kind of theory construction. Presented with highly 
restricted data, he constructs a theory of language of which this data 
is a sample (and, in fact, a highly degenerate sample, in the sense that 
much of it must be excluded as irrelevant and incorrect—thus the 
child learns rules of grammar that identify much of what he has 
heard as ill-formed, inaccurate, and inappropriate). The child’s ultimate 
knowledge of language obviously extends far beyond the data pre
sented to him. In other words, the theory he has in some way devel
oped has a predictive scope of which the data on which it is based 
constitute a negligible part. The normal use of language characteristi
cally involves new sentences, sentences that bear no point-by-point 
resemblance or analogy to those in the child’s experience.” Our goal 
is not to endorse Chomsky’s theory of universal grammar. Rather, 
we concur with this specific quote in terms of its characterization of 
the input–output relationship, in which human linguistic outputs 
are underdetermined by the inputs children receive. Broadly this 
also links to the alternative approach on which we focus (the 
theory-based view of cognition), discussed in the second half of the 
paper.
7 Relative to the idea of next-word prediction (and the probabilistic 
draw of the next word), there are different ways for this to happen. 
For example, a model might always pick the most likely next word 
(greedy). Or a model might explore multiple sequences simulta
neously (beam search) along with many other approaches (top-k 
sampling, top-p sampling, etc.). In practice, different types of 
prompts (depending on prompt context, length, tone, style) lead to 
different types of sampling and next-word prediction (Holtzman 
et al. 2019), as does changing the temperature setting of the model.
8 AI can, of course, be (and has been) a powerful aid in scientific 
discovery. For example, modern AI techniques have analyzed astro
nomical data sets far more quickly and accurately than humans, 
helping identify new planets and celestial phenomena. Similarly, 
DeepMind’s AlphaFold has revolutionized protein structure predic
tion, a critical task for understanding biological processes and 
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developing new medications (e.g., Jumper et al. 2021). Yet it is 
important to state that, in both of these cases, AI is not somehow 
independently doing the science by forming hypotheses or conduct
ing experiments, but these hypotheses were provided by human 
scientists in the form of patterns and reward functions, respectively. 
AI has significantly accelerated research by enabling scientists to 
process large data sets and uncover novel patterns, allowing scien
tists to focus on hypothesis generation and experimental design.
9 This leads to the problem of surprise and the famous dark room 
problem of predictive processing. For an attempt to deal with this, 
see Clark (2018; also see Constant et al. 2024).
10 Though we, of course, recognize that there is significant disagree
ment on this point (for example, related to AI versus human creativ
ity, see Franceschelli and Musolesi 2023).
11 The capabilities of AI are rapidly evolving, and future develop
ments are hard to anticipate. In this paper we discuss AI in its past 
and current state, comparing it with human cognition, rather than 
speculate about what AI might be capable of in the future. It might 
be that the forms of human reasoning and cognition that we empha
size (and claim, in this paper, to be unique to humans) could be 
mimicked or replicated by future AI systems.
12 Beyond the ability of a human or AI to solve previously unseen, 
new problems (which is the focus of Chollet’s ARC challenge), there 
is an even higher form of intelligence in being able to specify and 
formulate problems in the first place (Felin and Zenger 2017). This 
is a skill that is manifest in humans—in theorizing and causal 
reasoning—but not evident in AI. As we discuss later, it was the 
ability of the Wright brothers to formulate the right problems 
(lift, propulsion, and steering) that enabled them to then identify 
the right data, specific forms of experimentation, and relevant 
solutions.
13 Copernicus’s On the Revolution of the Heavenly Spheres was pub
lished in 1543. The theory contained within the book represented a 
fringe view within science. Given the fringe nature of the Coperni
can view, his book was withdrawn from circulation and eventually 
censored (Gingerich and MacLachlan 2005).
14 A deeper issue here is the frame problem (McCarthy and Hayes 
1969) and the implications it has not just for artificial intelligence, 
but also for understanding decision making under uncertainty 
(Felin et al. 2014). In the latter context, the frame problem refers to 
the challenge of determining which aspects of a situation are rele
vant or irrelevant when making decisions (cf. Felin and Koenderink 
2022). The frame problem highlights the difficulty of specifying all 
the possible consequences of an action in a dynamic environment, 
particularly when only some aspects of the world are affected by 
the action and others remain unchanged. In decision making under 
uncertainty, the frame problem underscores the complexity of rea
soning about the implications of actions when the system must 
account for numerous potential variables and outcomes, often lead
ing to difficulties in efficiently processing information and making 
reliable predictions.
15 The problems with this approach are not just discussed by us. 
For example, see Yin (2020) for related points in the field of 
neuroscience.
16 Machine-learning is said to be theory-free (to learn directly from 
data). However, the architects of these machine learning systems 
are making any number of top-down decisions about the design 
and architecture of the algorithms and how the learning occurs and 
the types of outputs that are valued. These decisions all imply mini- 
theories of what is important—a point that is not often recognized 
(cf. Rudin 2019). This involves obvious things such as the choice of 
data, model architecture, and hyperparameter settings, as well as 

loss functions and metrics, regularization and generalization techni
ques, valued outputs, and types of human reinforcement.
17 The predictive processing and active inference approach has 
many of these features (e.g., Parr and Friston 2017).
18 As captured by a prominent engineer at the time, “There proba
bly can be found no better example of the speculative tendency car
rying man to the verge of the chimerical than in his attempts to 
imitate the birds, or no field where so much inventive seed has 
been sown with so little return as in the attempts of man to fly suc
cessfully through the air” (Melville 1901, p. 820).
19 In economics, there is similarly an emphasis on how beliefs lead 
to negative outcomes. For example, Gennaioli and Shleifer’s (2018; 
also see Bénabou and Tirole 2016) theory of beliefs focuses on 
beliefs that turn out to be delusional and are the result of poor judg
ment, biased information processing, and selective perception. In a 
related vein, Bordalo et al (2023) largely argue that humans are 
poor statisticians—selectively attending to and inappropriately 
weighting evidence and feedback—leading to suboptimal out
comes. In this paper we focus on discrepant or heterogeneous 
beliefs that appear delusional and highly biased to some, or even a 
majority, of actors in the present but turn out to be correct. Impor
tantly, our theory is one of belief asymmetry rather than bounded 
rationality, bias, or information asymmetry (cf. Felin et al. 2024).
20 A central aspect of this argument, which we unfortunately do not 
have room to explicate in this paper, is that humans are biological 
organisms. The theory-based view builds on the idea that all organ
isms engage in a form of forward-looking problem solving. A cen
tral aspect of this approach is captured by the biologist Rupert 
Riedl (1984, p. 8), who argued that “every conscious cognitive pro
cess will show itself to be steeped in theories; full of hypotheses.” 
To see the implications of this biological argument on human 
cognition—particularly in comparison with statistical and computa
tional approaches—see Felin and Koenderink (2022; also see Roli 
et al. 2022, Jaeger et al. 2024). For the embodied aspects of human 
cognition, see Mastrogiorgio et al. (2022).
21 There are parallel literatures in strategy that focus on mental 
representations (e.g., Csaszar and Levinthal 2016) and forward- 
looking search and representation (e.g., Gavetti and Levinthal 2000; 
also see Gans et al. 2019).
22 Beyond the work of Ramsey, Ajzen, and Bratman mentioned 
above, there is, of course, a large literature on how beliefs motivate 
action. Our emphasis here is on the interaction between data and 
beliefs (and in the context of humans, theory-based causal logic) as 
this has manifest in computational, Bayesian, and probabilistic 
forms of AI and cognition.
23 The Wright brothers respected Otto Lilienthal and carefully ana
lyzed his data. Based on their own experimentation, they found 
that some of his data on lift overestimated lift coefficients. Lilienthal 
tested one wing shape, whereas the Wright brothers experimented 
with various options. The Wright brothers constructed their own 
wind tunnel to gather aerodynamic data. Their tests led them to 
develop new lift, drag, and pressure distribution data, which dif
fered from Lilienthal’s findings. These data were critical in design
ing their successful aircraft.
24 This has parallels with the data–information–knowledge–wisdom 
framework. For discussions of this see Felin et al. (2021b) and Yanai 
and Lercher (2020).
25 For example, even simple organisms such as Drosophila (fruit flies) 
exhibit novel and surprising behaviors, such as initiating activity, 
expectations, and problem solving, that cannot be explained by or 
reduced to environmental inputs, genetic factors, or neural proces
sing (see Heisenberg 2014).

Felin and Holweg: AI, Human Cognition, and Causal Reasoning 
Strategy Science, Articles in Advance, pp. 1–26, © 2024 The Author(s) 21 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
01

:6
80

:c
d0

1:
ec

10
:5

9a
e:

ba
b6

:e
67

7:
2b

e9
] 

on
 0

4 
D

ec
em

be
r 

20
24

, a
t 1

3:
41

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



References
Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, 

McGrew B (2023) GPT-4 technical report. Preprint, submitted 
March 15, https://arxiv.org/abs/2303.08774.

Agarwal R, Bacco F, Camuffo A, Coali A, Gambardella A, Msangi 
H, Wormald A (2023) Does a theory-of-value add value? Evi
dence from a randomized control trial with Tanzanian entre
preneurs. Preprint, submitted April 20, https://dx.doi.org/10. 
2139/ssrn.4412041.

Aggarwal CC (2018) Neural Networks and Deep Learning (Springer 
Publishing, New York).

Agrawal A, Gans J, Goldfarb A (2022) Prediction Machines (Updated 
and Expanded): The Simple Economics of Artificial Intelligence (Har
vard Business Review Press, Boston).

Agrawal A, McHale J, Oettl A (2023) Superhuman science: How 
artificial intelligence may impact innovation. J. Evolutionary 
Econom. 33(5):1473–1517.

Agrawal A, McHale J, Oettl A (2024) Artificial intelligence and sci
entific discovery: A model of prioritized search. Res. Policy 
53(5):104989.

Ajzen I (1991) The theory of planned behavior. Organ. Behav. Human 
Decision Processes 50(2):179–211.

Amaya J, Holweg M (2024) Using algorithms to improve knowledge 
work. J. Oper. Management 70(3):482–513.

Ananthaswamy A (2022) DeepMind AI topples experts at complex 
game Stratego. Nature 604(7907):36.

Anderson JR (1990) The Adaptive Character of Thought (Psychology Press, 
London).

Anderson JD (2004) Inventing Flight: The Wright Brothers and Their 
Predecessors (Johns Hopkins University Press, Baltimore).

Anderson C (2008) The end of theory: The data deluge makes the 
scientific method obsolete. Wired 16(7).

Anglin SM (2019) Do beliefs yield to evidence? Examining belief 
perseverance vs. change in response to congruent empirical 
findings. J. Experiment. Soc. Psych. 82:176–199.

Babina T, Fedyk A, He A, Hodson J (2024) Artificial intelligence, 
firm growth, and product innovation. J. Financial Econom. 
151:103745.

Baker B, Lansdell B, Kording KP (2022) Three aspects of representa
tion in neuroscience. Trends Cognitive Sci. 26(11):942–958.

Barney JB (1986) Strategic factor markets: Expectations, luck, and 
business strategy. Management Sci. 32(10):1231–1241.

Bell JJ, Pescher C, Tellis GJ, Füller J (2024) Can AI help in ideation? 
A theory-based model for idea screening in crowdsourcing con
tests. Marketing Sci. 43(1):54–72.

Bénabou R, Tirole J (2016) Mindful economics: The production, con
sumption, and value of beliefs. J. Econom. Perspect. 30(3):141–164.

Bender EM, Gebru T, McMillan-Major A, Shmitchell S (2021) On the 
dangers of stochastic parrots: Can language models be too big? 
Proc. 2021 ACM Conf. Fairness Accountability Transparency (ACM, 
New York), 610–623.

Bengio Y, Lecun Y, Hinton G (2021) Deep learning for AI. Comm. 
ACM 64(7):58–65.

Bengio Y, Hinton G, Yao A, Song D, Abbeel P, Harari YN, Hadfield 
G, Russell S, Kahneman D, Mindermann S (2023) Managing AI 
risks in an era of rapid progress. Preprint, submitted October 
26, https://arxiv.org/abs/2310.17688.

Bhatia S (2023) Inductive reasoning in minds and machines. Psych. 
Rev. 130(1):105–125.

Biber D (1991) Variation Across Speech and Writing (Cambridge Uni
versity Press, Cambridge, MA).

Binz M, Schulz E (2023) Turning large language models into cogni
tive models. Preprint, submitted June 6, https://arxiv.org/abs/ 
2306.03917.

Binz M, Dasgupta I, Jagadish AK, Botvinick M, Wang JX, Schulz E 
(2023) Meta-learned models of cognition. Behav. Brain Sci. 
47:e147.

Bordalo P, Conlon JJ, Gennaioli N, Kwon SY, Shleifer A (2023) How 
people use statistics. NBER Working Paper No. 31631, National 
Bureau of Economic Research, Cambridge, MA.

Bory P (2019) Deep new: The shifting narratives of artificial intelli
gence from Deep Blue to AlphaGo. Convergence 25(4):627–642.

Bratman M (1987) Intention, Plans and Practical Reason (Harvard Uni
versity Press, Cambridge, MA).

Brembs B (2021) The brain as a dynamically active organ. Biochemi
cal Biophysical Res. Comm. 564:55–69.

Brynjolfsson E, Hitt LM (1998) Beyond the productivity paradox. 
Comm. ACM 41(8):49–55.

Buchanan BG, Shortliffe EH (1984) Rule Based Expert Systems: The 
Mycin Experiments of the Stanford Heuristic Programming Project 
(Addison-Wesley, Reading, MA).

Buckner CJ (2023) From Deep Learning to Rational Machines: What the 
History of Philosophy Can Teach Us About the Future of Artificial 
Intelligence (Oxford University Press, Oxford, UK).

Butlin P, Long R, Elmoznino E, Bengio Y, Birch J, Constant A, Van
Rullen R (2023) Consciousness in artificial intelligence: Insights 
from the science of consciousness. Preprint, submitted August 
17, https://arxiv.org/abs/2308.08708.

Camuffo A, Gambardella A, Pignataro A (2022) Microfoundations 
of low-frequency high-impact decisions. Preprint, submitted 
June 23, https://dx.doi.org/10.2139/ssrn.4144724.

Camuffo A, Cordova A, Gambardella A, Spina C (2020) A scientific 
approach to entrepreneurial decision making: Evidence from a 
randomized control trial. Management Sci. 66(2):564–586.

Carey S, Spelke E (1996) Science and core knowledge. Philos. Sci. 
63(4):515–533.

Chang Y, Wang X, Wang J, Wu Y, Yang L, Zhu K, Xie X (2024) A 
survey on evaluation of large language models. ACM Trans. 
Intelligent Systems Tech. 15(3):1–45.

Chater N (2018) Mind Is Flat: The Remarkable Shallowness of the Impro
vising Brain (Yale University Press, New Haven, CT).

Chater N, Felin T, Funder DC, Gigerenzer G, Koenderink JJ, Krue
ger JI, Todd PM (2018) Mind, rationality, and cognition: An 
interdisciplinary debate. Psychonomic Bull. Rev. 25:793–826.

Chollet F (2019) On the measure of intelligence. Preprint, submitted 
November 5, https://arxiv.org/abs/1911.01547.

Chomsky N (1975) Reflections on Language (Pantheon, New York).
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